logo
Проектирование и испытание фототранзистора

2.1 Принцип работы

Работа различных полупроводниковых приемников излучения (фоторезисторы, фотодиоды, фототранзисторы, фототиристоры) основана на использовании внутреннего фотоэффекта, который состоит в том, что под действием излучения в полупроводниках происходит генерация пар носителей заряда -- электронов и дырок. Эти дополнительные носители увеличивают электрическую проводимость. Такая добавочная проводимость, обусловленная действием фотонов, получила название фотопроводимости. У металлов явление фотопроводимости практически отсутствует, так как у них концентрация электронов проводимости огромна (примерно 1022 см-3) и не может заметно увеличиться под действием излучения. В некоторых приборах за счет фотогенерации электронов и дырок возникает ЭДС, которую принято называть фото-ЭДС, и тогда эти приборы работают как источники тока. А в результате рекомбинации электронов и дырок в полупроводниках образуются фотоны, и при некоторых условиях полупроводниковые приборы могут работать в качестве источников излучения [5].

Фототранзистор - фоточувствительный полупроводниковый приемник излучения, по структуре подобный транзистору и обеспечивающий внутреннее усиление сигнала. Его можно представить состоящим из фотодиода и транзистора. Фотодиодом является освещаемая часть перехода база-коллектор, транзистором - часть структуры, расположенная непосредственно под эмиттером. Так как фотодиод и коллекторный переход транзистора конструктивно объединены, то фототок суммируется с коллекторным током. Напряжение питания подводят так, чтобы коллекторный переход был закрыт, а эмиттерный - открыт. База может быть отключенной.

В отличие от биполярного транзистора, у фототранзистора отсутствует электрический контакт к базе, а управление током базы осуществляется путем изменения ее освещенности. По этой причине конструктивно фототранзистор имеет только два вывода -- эмиттер и коллектор.

Рисунок 2.1 - а) Схема фототранзистора со структурой p-n-p;

б) зонная диаграмма фототранзистора в активном режиме работы

На рис. 2.1 показаны схема включения фототранзистора и зонная диаграмма в активном режиме работы.

При попадании светового потока на n-область базы в ней генерируются неравновесные электроны и дырки. Дырки будут являться неосновными носителями, увеличение их концентрации приведет к росту дрейфовой компоненты тока из базы в коллектор. Величина первичного «затравочного» фототока будет выражаться такими же соотношениями, как и фототок диода на основе p-n-перехода. Отличие только в том, что неравновесные носители, участвующие в фототоке в фототранзисторе, собираются с области базы, ширина которой W меньше, чем диффузионная длина Lp. Поэтому плотность первичного «затравочного» фототока будет [7]:

(2.1)

Вследствие того что неравновесные дырки уходят из базы в коллектор, база заряжена отрицательно относительно эмиттера, что эквивалентно прямому смещению эмиттерного перехода фототранзистора. При прямом смещении эмиттерного p-n-перехода появляется инжекционная компонента тока из эмиттера в базу. При коэффициенте передачи эмиттерного тока б в базе рекомбинируют (1-б) инжектированных носителей или в в раз меньше, чем число инжектированных носителей. В условиях стационарного тока число прорекомбинировавших носителей в базе должно быть равно их числу, ушедшему с первоначальным фототоком. Поэтому инжекционный ток должен быть в в раз больше, чем первичный фототок. Ток коллектора IК будет состоять из трех компонент: первичного фототока Iф, инжекционного вIф и теплового IК0 тока [7].

IК= Iф+в Iф=(в+1) Iф+ IК0 (2.2)

Используя выражение для коэффициента усиления в базового тока через конструктивно-технологические параметры биполярного транзистора, получаем:

(2.3)

Величина первичного фототока IФ выражается через параметры светового потока и характеристики полупроводникового материала стандартным образом:

(2.4)

При освещении базы в ней возникают электронно-дырочные пары. Так же как и в фотодиоде, пары, достигшие в результате диффузии коллекторного перехода, разделяются полем перехода, неосновные носители из базы движутся в коллектор, при этом его ток увеличивается. Основные носители остаются в базе, понижая ее потенциал относительно эмиттера. При этом на эмиттерном переходе создается дополнительное прямое напряжение, вызывающее дополнительную инжекцию из эмиттера в базу и соответствующее увеличение тока коллектора.

Рисунок 2.2 - Энергетическая диаграмма фототранзистора (а) и вольтамперные характеристики фототранзистора при разных уровнях освещения (б).