logo
Проектирование передающей камеры

3. Электрический расчет передающей камеры

3.1 Оконечный видеоусилитель

Рис. 3.1.1 Схема оконечного усилителя

В качестве оконечного усилителя выберем двухтактный усилитель, который обладает параметрами приемлемыми при работе на нагрузке 75 Ом. Максимальный ток нагрузки:

.

Полученное значение тока некритично к выбору типа транзистора. Поэтому в качестве активного элемента выберем согласованную пару транзисторов КТ315А, КТ361А. В качестве диодов смещения выберем диоды КД512А.

Ток смещения:

.

Резисторы смещения:

Резисторы R3, R4 предназначены для стабилизации тока покоя и имеют сопротивление порядка нескольких Ом. Выберем R3=R4=1Ом.

Входное сопротивление каскада:

3.2 Каскад восстановления уровня черного

Рис. 3.2.1 Схема каскада восстановления уровня чёрного

При заряде конденсатора C1 постоянная времени цепи . При разряде конденсатора постоянная времени цепи . При этом искажений видеосигнала не будет возникать при условии .

Выберем конденсатор C1 = 1мкФ.

В качестве зарядного диода выберем диод Шоттки SM5817.

Так как диод обладает достаточно малым сопротивлением, то условие будет выполняться в широком диапазоне значений сопротивления резистора R1. Поэтому выберем сопротивление резистора R1=30 кОм.

3.3 Смеситель видеосигнала

Рис. 3.3.1 Схема смесителя

В качестве смесителя видеосигнала выберем резисторный каскад с общим коллектором [1]. В качестве активных элементов выберем транзисторы КТ315А.

Выходное сопротивление каскада:

.

Исходя из полученного неравенства, выбираем R3=2 кОм.

Начальный ток смещения:

.

Выберем коэффициент усиления по напряжению KУ=2.

Эмиттерный резистор:

.

Базовый ток:

.

Выбор базовых резисторов:

Из полученной системы R1=8.2 кОм, R2=3.6 кОм.

Входное сопротивление каскада:

.

Следовательно, RВХ=2.4 кОм.

Эмитерный конденсатор:

.

Разделительные конденсаторы:

Второй транзистор управляется КМОП сигналом, в связи с чем резистор R5 выполняет функцию ограничения тока.

Выберем значение резистора R3=33кОм.

3.4 Генератор синхроимпульсов

Структурная схема синхрогенератора приведена на рисунке 3.4.1

Рис. 3.4.1. Схема синхрогенератора

Задающий генератор построен на двух логических элементах, охваченных обратной связью через кварцевый резонатор и конденсатор. Делители построены на JK_триггерах.

Формирование низкочастотных и высокочастотных, а также всех вспомогательных импульсов, используемых при их формировании, производятся логическим сложением или умножением сигналов, поступающих с делителей.

3.5 Каскад коррекции апертурных искажений

Каскад коррекции апертурных искажений представляет собой сумматор входного сигнала и его второй производной с определенными весовыми коэффициентами [3]. Наиболее подходящими активными элементами будут транзисторы КТ315А.

Рис. 3.5.1 Каскад коррекции аппертурных искажений

Выходное сопротивление каскада:

.

Исходя из полученного неравенства выбираем R4=1кОм, R7=1кОм.

Начальный ток смещения VT1:

.

Эмиттерный резистор VT1:

.

Базовый ток VT1:

.

Выбор базовых резисторов VT1:

.

Из полученной системы R1=2.7 кОм, R2=3.3 кОм.

Начальный ток смещения VT2:

.

Базовый ток VT2:

.

Выбор базовых резисторов VT2:

.

Из полученной системы R5=2.7 кОм, R6=3.3 кОм.

Входное сопротивление каскада:

.

Следовательно RВХ=1 кОм.

Разделительные конденсаторы:

.

Дифференциальная развязка:

Данному условию соответствуют значения C3=1 нФ, L1=6 мкГн.

Высокочастотный фильтр:

Данному условию соответствуют значения C4=10 пФ, R8=7.9 кОм.

3.6 Каскад коррекции нелинейных искажений

Рис. 3.6.1 Каскад коррекции нелинейных искажений

Каскад коррекции нелинейных искажений представляет собой усилительный каскад с общим истоком и ступенчатой истоковой стабилизацией тока покоя [2]. Особых требований к мощности данного каскада не предъявляется. Поэтому для реализации корректора выбираем транзистор КП313Б, диоды Шоттки SM5817.

Стоковый резистор:

.

Выбираем резистор R2= 1 кОм.

Начальный ток стока:

.

Истоковый резистор:

.

Регулировку нелинейности будем производить в диапазоне напряжений до 1 В. Для наиболее плавной регулировки выберем резисторы R7=R8=470 Ом.

Делитель смещения:

.

Исходя из этих соотношений сопротивления резистора R6=2.7 кОм.

Начальные токи смещения на участках нелинейной характеристики:

.

Выбор резисторов обратной связи:

Из данных соотношений R4=2.2 кОм, R5=3.3 кОм.

Подтягивающий резистор на затворе выбирается исходя из токов утечки затвора. Для данного транзистора наиболее подходящий резистор R1=1 МОм.

Входное сопротивление:

.

Разделительные конденсаторы:

3.7 Предоконечный усилитель

Данный усилитель представляет резисторный каскад, включенный по схеме с общим истоком [4]. Усилительным элементом является транзистор VT1. Транзистор VT2 задает начальный ток стока и следовательно, коэффициент усиления. Наиболее подходящими для данной схемы являются транзисторы КП313Б.

Рис. 3.7.1 Предоконечный усилитель

Стоковый резистор:

.

Выбираем резистор R2=1 кОм.

Начальный ток стока:

.

Крутизна характеристики при данном токе S=10 мА/В.

Коэффициент усиления каскада:

.

Необходимое смещение затвора транзистора VT2 UЗИ=1.2 В.

Делитель R3, R4:

Из данных соотношений R4=100 кОм, R3=910 кОм.

Резистор R1 определяется исходя из токов утечки затвора. Выбираем значение R1=1МОм.

Входное сопротивление:

.

Разделительные конденсаторы:

.

Блокировочные конденсаторы фильтруют помехи питающих напряжений. Оптимальные значения С24=100 нФ.

3.8 Каскад противошумовой коррекции

Рис. 3.8.1 Схема каскада противошумовой коррекции

Каскад противошумовой коррекции представляет собой резисторный каскад на полевом транзисторе, включенным по схеме с общим истоком [2]. Реализуем данный каскад на транзисторе КП313Б.

Стоковый резистор:

.

Выбираем резистор R1=1 кОм.

Ток стока:

.

Истоковый резистор:

.

Коэффициент усиления каскада:

.

Эмиттерный конденсатор:

.

Разделительные конденсаторы:

.

Сопротивление резистора на затворе выбирается намного меньше сопротивления передающей трубки (1…10 МОм). Выбираем значение резистора R2=100 кОм.

Корректирующий конденсатор: