logo
Проектирование установки вакуумного напыления пленок КР1095 ПП1

1.4 Литературный обзор

1.4.1 Механизмы отказов металлизации в результате электромиграции

Важную роль в производстве интегральных схем играет соединительная металлизация. Занимаемая ею площадь сравнима, а иногда превышает площадь активных и пассивных элементов. Требования к способу металлизации можно определить с точки зрения исходных параметров, процента выхода годных, надежности, простоты изготовления и стоимости.

В процессе эксплуатации ППП и интегральных микросхем металлизация подвергается токовым и тепловым нагрузкам. Все это создает благоприятные условия для протекания различных процессов деградации металлической разводки, приводящих к изменению ее первоначальных свойств, и в ряде случаев к внезапным отказам.

Явление электродиффузии и электромиграции заключается в том, что в металлических проводниках в определенных условиях при прохождении постоянного тока большой плотности (около 106 АЧсм2) наблюдается перенос материала проводника из района отрицательного контакта к положительному.

При приложении электрического поля Е к проводнику, в нем возникает поток электронов Iе, направленный навстречу электрическому полю. Положительно заряженные ионы металла в этих условиях испытывают воздействие двух сил: Fz - возникающая под действием электрического поля, стремясь переместить ионы по направлению поля. Происхождение второй силы Fе связано с взаимодействием потока электронов с ионами металла, она направлена навстречу электрическому полю. При достаточно большой плотности тока возникают условия, когда Fz > Fе и ионы металла начинают перемещаться из области контакта, находящегося под (-) потенциалом в область положительного контакта.

В результате этого в области (-) контакта создаются обедненные участки и пустоты, а в районе положительного контакта происходит накопление металла, а в отдельных местах образуются бугорки, вырастают металлические «усы» и «метелки». Неоднородный нагрев проводника ускоряет процесс переноса.

Конечным результатом процесса может быть значительное уменьшение сечения проводника в области отрицательного контакта вплоть до наступления разрыва пленки.

Исследование температурной зависимости электродиффузии в металлических тонких пленках показало наличие двух механизмов переноса вещества в пленочных проводниках. Тонкие проводящие пленки, в том числе алюминиевые, представляют собой поликристаллическую структуру. При относительно низких температурах (до +200 0С) в пленках перенос вещества происходит вдоль границ зерен.

Объемная диффузия при низких температурах значительно меньше, т. к. протяженность границ зерен существенно больше размеров самих кристаллов.

При этом энергия активации диффузии вдоль границ зерен существенно ниже (0,5…. 0,7 эВ) по сравнению с энергией активации процесса объемной диффузии (около 1,4 эВ). Интенсивность диффузии в мелкокристаллических структурах существенно выше, чем в крупнокристаллических. С ростом температуры увеличивается коэффициент объемной диффузии, и перенос вещества происходит преимущественно по объему поликристалла. [7]

Изучение процесса формирования пустот вследствие электродиффузии в тонкопленочных алюминиевых проводниках показывает большую неоднородность границ зерен. Наиболее вероятно пустоты образуются вблизи точек соприкосновения трех зерен, т. к. при направлении потоков электронов слева направо движение ионов металла более вероятно вдоль двух границ зерен направо, чем вдоль одной границы налево.

Для проводящих дорожек равного поперечного сечения, перенос вещества происходит интенсивнее в тех местах, где более густая сеть границ зерен, т.е. в местах с более мелкой структурой. Поэтому в этих местах имеется повышенная вероятность возникновения пустот, объединение их с образованием сквозных трещин.

Изменение ориентации зерен также способствует изменению скорости переноса вещества и образованию пустот и трещин. Это может иметь место при изменении структуры или состава подложки, на которую нанесена металлическая пленка.

В алюминиевых пленках на монокристаллическом кремнии обнаруживается тенденция к образованию структуры, близкой к монокристаллической, в то время как на двуокиси кремния образуется более разупорядочная пленка, близкая к аморфной. На границах таких областей с большей вероятностью образуются трещины. Подобная же ситуация создается на ступеньки окисла. При этом следует заметить, здесь действуют два процесса, способствующих образованию разрыва токоведущей дорожки. Первый из них обусловлен изменением ориентации зерен на плоской поверхности проводящей пленки, второй процесс связан с уменьшением поперечного сечения проводящей пленки на ступеньке окисла. Последнее вызывает возрастание плотности тока и скорости переноса вещества. [6]

Однако, несмотря на то, что использованию процессов электромиграции посвящено большое количество работ, до настоящего времени приемлемой теоретической модели процесса создать пока не удалось. Явление электропереноса вещества в тонких металлических пленках наблюдается при прохождении постоянного или пульсирующего тока. Ускорению электродиффузии способствуют дефекты металлической пленки в виде царапин, посторонних включений, сужения металлических дорожек, неравномерности по толщине пленки. Все эти факторы создают градиенты плотности тока и температуры, вследствие чего и ускоряется электродиффузия, конечным результатом которой является отказ прибора из-за разрыва металлизации.

Прежде всего, необходимы меры по снижению плотности тока, проходящего по металлическим дорожкам. Это может быть достигнуто как за счет выбора режима, так и за счет увеличения поперечного сечения проводника, которое предпочтительнее осуществлять, увеличивая ширину дорожек. Положительный эффект оказывают защитные покрытия на проводящих дорожках в виде различных стенок. Препятствуя образованию бугорков, диэлектрические покрытия способствуют снижению вероятности отказа за счет электродиффузии. Существенное влияние уделено качеству самой металлизации. Предпочтительны крупнозернистые пленки с ориентацией зерен, способствующей снижению эффекта электродиффузии.

Идеальным решением проблемы исключения электродиффузии было бы создание монокристаллических или аморфных проводящих пленок. Возможность создания металлизации с аморфной структурой более реально. Например, сплавы никеля с молибденом, вольфрамом при определенных условиях образуют аморфные структуры. Основным препятствием к использованию этих сплавов в качестве исходных материалов для металлизации является относительно высокое удельное сопротивление пленок. Однако очень низкие коэффициенты диффузии примесей в таких сплавах уже сейчас делают перспективным их применение в качестве барьерного слоя, препятствующего проникновению кремния в межэлементные соединения при многослойной металлизации. [8]

1.4.2 Механизмы коррозии и окисления металлизации

Проникновение влаги в герметизированный корпус, адсорбция ее на поверхности металлизации через поры и трещины в защитных покрытиях, а также наличие ионных загрязнений на поверхности кристалла способствует возникновению коррозии металлизации, носящей, как правило, электрохимический характер. При достижении относительной влажности внутри корпуса около 60% создаются благоприятные условия для адсорбирования на поверхности кристалла достаточного количества влаги, обеспечивающей высокую электролитическую проводимость.

Как уже было сказано, при производстве приборов имеется большое количество источников загрязнения поверхности кристалла ионами примеси. В первую очередь это загрязнения, поступающие в результате обработки пластин. Далее, это атмосфера герметизации, детали корпуса, клеевые составы, применяемые для посадки кристалла и пластмасса, используемая для герметизации приборов.

Наиболее опасным для Al являются ионы натрия, калия и хлора. Из-за амфотерности алюминий может коррозировать как в кислой, так и в щелочной среде. Как правило, в большей степени подвергаются коррозии металлические электроды, находящиеся под (-) потенциалом. Они разрушаются под действием (+) заряженных ионов. Такому же воздействию подвергаются (+) заряженные электроды, взаимодействуя с (-) ионами. Однако скорость коррозии (+) заряженных участников ниже, т. к. на них одновременно с коррозией идет активный процесс образования слоя окиси алюминия, препятствующий дальнейшему его разрушению. При наличии на поверхности кристалла ионов хлора коррозия положительных участков металлизации значительно ускоряется вследствие большой проникающей способности иона хлора сквозь толстую пленку окиси алюминия. Скорость коррозии существенно зависит от напряжения, подаваемого на схему. Разности потенциалов 5В и более достаточно для того, чтобы возникла интенсивная коррозия. Скорость коррозии зависит также от расстояния между электродами, температуры окружающей среды и концентрации ионов примеси на поверхности кристалла. Анализ отказов, возникающих в результате коррозии, показывает, что последняя возникает и развивается в первую очередь на границах зерен с образованием сплошных микротрещин, приводящих к обрыву металлизации. Применение стекла с повышенным содержанием фосфора значительно увеличивает коррозию, т. к. избыточный фосфор, взаимодействуя с водой, образует фосфорную кислоту, которая усиливает коррозию металлизации. Снижение весовой концентрации фосфора в фосфоросиликатном стекле, контактирующем с алюминиевой металлизацией до 5%, увеличивает среднюю наработку до отказа из-за коррозии более чем на три порядка. [9]

Параллельно с механизмом электродиффузии и электрохимической коррозии действует механизм деградации механических пленок, связанный с окислением Al, что ведет к увеличению омического сопротивления токоведущих дорожек. В результате роста окисной пленки на поверхности проводящих дорожек и образование окисных межзеренных прослоек, уменьшается объем и эффективное поперечное сечение проводника и, как следствие, увеличивается удельное сопротивление материала. Ухудшение условий прохождения электрического тока по токоведущим дорожкам нарушает температурный режим прибора, приводя к локальным перегревам, усилению электродиффузии и росту вероятности отказа за счет обрыва металлизации.

Кроме того, локальный перегрев токоведущих дорожек способствует укрупнению зерен и расстояние их до поперечного размера дорожки. В этих условиях происходит разрыв или отслаивание металлизации из-за больших растягивающих усилий, возникающих в местах разрастания зерен.

Действие данного механизма отказов существенно ослаблено за счет снижения плотности тока, протекающего по токоведущим дорожкам, а также добавлением в металлизацию специальных примесей, например натрия до 1% повышающих температуру рекристаллизации.

Особо опасным местом в ПП структуре является металлизация на ступеньках окисла. (рис. 5)

Рис. 5 Металлизация на ступеньке окисла.

1 - место концентрации напряжений и образование микротрещин.

При напылении вследствие резкого изменения ориентации центров кристаллизации металлическая пленка на ступеньках осаждается неравномерно. В зависимости от соотношения ширины окна, высоты ступеньки и угла, под которым поток напыляемого материала направляется к поверхности подложки, толщина стенки составляет от 15 до 35% от толщины плоской части металлизации. Из-за дефекта затенения в углах ступеньки образуются места с более тонким покрытием, имеющим повышенный уровень механических напряжений, в результате действия которых в них могут образовываться микротрещины. При последующей эксплуатации микротрещины, постепенно разрастаясь и объединяясь, приводят к обрыву металлизации.

Дефекты в окисле в виде микротрещин, проколов, неровностей края окисла, таких как вырывы, при осаждении металлических пленок на его поверхности могут приводить к коротким замыканиям активных областей в полупроводниковом кристалле и к закорачиванию проводников при многослойной металлизации. В случае несквозных трещин и проколов в слое окисла дефекты металлизации проявляются при последующей эксплуатации приборов в аппаратуре. [6]

2. Специальная часть

2.1 Теоретическая часть

2.1.1 Физический процесс механизма распыления алюминия

Магнетронные системы ионного распыления являются усовершенствованными диодными системами и отличаются от них наличием в прикатодной области электрического и кольцеобразного магнитного полей, направленных перпендикулярно друг другу.

Прежде чем рассмотреть магнетронные системы, необходимо ознакомиться с законами движения заряженных частиц в скрещенных электрическом и магнитном полях. Раздельное воздействие электрического и магнитного полей на движение заряженных частиц используется в работе электронно-лучевых испарителей. Совершенно иначе ведут себя заряженные частицы при одновременном воздействии этих полей.

Остановимся на простейшем случае, когда эти поля однородны и направлены перпендикулярно друг другу (рис. 6)

Рис. 6 Траектория движения электрона во взаимно перпендикулярных магнитном и электрическом полях

Напряженность электрического поля Е отложена по вертикальной оси, а напряженность магнитного поля В в перпендикулярной плоскости рисунка. Время отсчитывается по горизонтальной оси.

Пусть в некоторый начальный момент времени заряженная частица находится в точке О и ее скорость равна нулю. Под действием электрического поля электрон начинает ускоряться вдоль оси Е. по мере увеличения скорости сила, действующая со стороны магнитного поля, будет возрастать, т. к. она пропорциональна скорости, и движущийся электрон начинает отклоняться, т.е. траектория будет представлять собой циклоиды. Электроны, эмиттируемые катодом отклоняться в сторону то оси Е.

Постепенный поворот траектории должен привести к тому, что электрон начиная с некоторого момента времени 1, которому соответствует точка 1, начинает двигаться к горизонтальной оси . На участке траектории от точки 1 к точке 2 скорость электрона из - за торможения в электрическом поле уменьшается и обращается в нуль, когда он, в момент времени 2 достигает горизонтальной оси - точка 2. Затем снова начинается процесс ускорения, сменяющийся фазой торможения и отклонением траектории от точки 3 до точки 4 и т.д.

Таким образом, траектория электрона состоит из периодически повторяющихся одинаковых фаз. Такая арочноподобная кривая носит название «циклоиды».

Рассмотрим влияние скрещенных полей на процесс ионного распыления. Напомним, что в диодной системе разряд поддерживается вторичными электронами, эмиттируемыми с поверхности катода - мишени под действием ионной бомбардировки. В этом случае электроны покидают катод, ускоряются в перпендикулярном к нему направлении электрическим полем и пройдя положительный столб, попадают на анод и захватываются им (рис. 7)

а) б)

Рис. 7 Влияние скрещенных полей на характер ионного распыления в диодной (а) и магнетронной (б) системах.

Если перпендикулярно электрическому полю наложить параллельно катоду и очень близко к нему магнитное поле (рис. а, б), то траектории электронов будут представлять собой циклоиды. Электроны, эмиттируемые катодом под действием ионной бомбардировки не могут при этом двигаться к аноду в перпендикулярном направлении, т. к. оказываются в своеобразной ловушке, создаваемой магнитным полем. До тех пор, пока не произойдет несколько ионизирующих столкновений электронов с атомами рабочего газа, они перемещаются в ловушке, теряя энергию, полученную от электрического поля. Большая часть энергии электронов расходуется на ионизацию в непосредственной близости от катода, где создается высокая концентрация положительных ионов. В результате возрастает интенсивность бомбардировки катода и скорость его распыления.

Так как изменение магнитного поля увеличивает эффективность ионизации, тлеющий разряд в магнетронных системах поддерживается при более низких давлениях, чем в диодных. Магнетронные системы весьма эффективно работают при давлениях вплоть до 10-2 Па и постоянном напряжении, что обеспечивает высокую чистоту наносимых пленок.

Подводя итоги, следует отметить, что источники магнетронного распыления, называемые магратронами, позволили значительно повысить параметры и расширить технологические возможности диодных распылительных систем:

- увеличить более чем на порядок скорость нанесения пленок приблизив ее к скорости нанесения термовакуумного осаждения, и уменьшить на порядок рабочее давление, а значит, и вероятность попадания газовых включений в пленку;

- исключить интенсивную бомбардировку подложки высокоэнергетичными электронами, т.е. снизить неконтролируемый нагрев подложки и повреждение структур;

- обеспечить нанесение пленок алюминия и его сплавов с большими скоростями распыления;

- заменить высоковольтное оборудование низковольтным.

Кроме того, магратроны обеспечивают длительный ресурс работы и открывают возможность создания промышленных установок полунепрерывного и непрерывного действия. В настоящее время магратроны являются одним из основных устройств нанесения тонких пленок при производстве всех типов ИМС. В оборудовании для нанесения тонких пленок используют плоские магратроны с кольцевой и овально - протяженной зонами эрозии, состоящие из следующих основных частей: водоохлаждаемого катода, магнитного блока и анода. На рисунке 8 приведена схема магнетронной системы с плоским катодом и кольцевым анодом.

Блок из постоянных магнитов расположен под катодом. Подложки - над анодом. При подаче постоянного напряжения между катодом - мишенью и анодом (положительный или нулевой потенциал) возникает электрическое поле с составляющей, перпендикулярной плоскости катода. Таким образом у катода создается скрещенное электромагнитное поле. Магнитная ловушка обеспечивает отсутствие бомбардировки подложки вторичными электронами высоких энергий.

Основным недостатком системы с плоским катодом и кольцевым анодом является неравномерность электрического и магнитного полей и, соответственно, плотности разрядного тока, приводящие к низкому коэффициенту использования материала мишени (около 25%). Распыляется только узкая кольцеобразная область поверхности мишени.

В настоящее время магнетронное распыление широко применяется в промышленном производстве для получения одно- и многослойных систем металлизации, резистивных изолирующих, защитных слоев и т.д.

2.1.2 Факторы, влияющие на свойства тонких пленок

Структура и свойства тонких пленок, полученных путем испарения в вакууме, в значительной степени определяются условиями их конденсации и зависят от следующих факторов: природы используемого вещества и соответствия его структуры структуре ее очистки, микрорельефа и температуры поверхности в процессе конденсации на ней испаряемого вещества, степени вакуума и состава остальной среды в процессе испарения вещества и его конденсации, скорости испарения вещества, угла падения молекулярного потока на подложку, толщины пленки.

Адгезия пленки к подложке во многом зависит от наличия оксидного слоя, который может возникнуть в процессе осаждения между пленкой и подложкой. Желательно чтобы образующийся слой оксида был равномерно распределен между пленкой и подложкой. Если же оксид неравномерно распределен между пленкой и подложкой или располагается на поверхности пленки, то свойства пленки могут изменяться. Необходимым условием хорошей адгезии является очистка поверхности подложки от органических и неорганических загрязнений.

Наличие загрязнений на подложке, например, в форме небольших, изолированных друг от друга островков сильно влияет на электрофизические свойства пленок, в зависимости от того, какая энергия связи больше - между материалом пленки и этими островками или между материалом пленки и подложкой. Поэтому пред напылением необходимо тщательно очищать подложки.

Загрязнение напыляемой пленки происходит вследствие ряда других причин. Так в потоке пара основного вещества всегда присутствуют и пары материала, из которого изготовлен материал, поэтому выбирают материал, упругость пара которого при температуре испарения на несколько порядков ниже упругости пара основного вещества.

Присутствие на подложке до начала осаждения адсорбированных молекул воздуха не только загрязняют пленку, но и служат причиной снижения адгезии, т. к. экранируют подложку от пленки.

Размер зерен и степень шероховатости поверхности подложки оказывают существенное влияние на структуру образующейся пленки. Пленки могут быть мелкозернистой, крупнозернистой и аморфной структурой, в зависимости от условия напыления.

2.1.3 Влияние вакуума на процесс нанесения пленки

Процессы, происходящие при нанесении металлических пленок во многом определяются степенью вакуума в рабочих камерах, характеризующую среднюю длину свободного пути частиц осаждаемого вещества.

При нанесении пленок в среднем вакууме частицы осаждаемого вещества имеют различный характер движения. Часть из них при движении по направлению к подложке претерпевают большое количество столкновений с молекулами газа.

При нанесении пленок в высоком вакууме частицы осаждаемого вещества летят независимо друг от друга по прямолинейным траекториям без взаимных столкновений и столкновений с молекулами газа, не изменяя своего направления, и конденсируются на стенках камеры и поверхности подложки.

Условие вакуума влияет на рост пленок следующим образом.

Во-первых, если вакуум недостаточно высокий, заметная часть частиц, летящих из источника, встречает молекулы остаточного газа, и в результате столкновения с ними рассеивается, т.е. теряет первоначальное направление своего движения и не попадают на подложку. Это существенно снижает скорость нанесения пленок.

Во-вторых, остаточные газы в рабочей камере, поглощаемые растущей пленкой в процессе ее роста, вступают в химические реакции, что ухудшает электрофизические параметры пленки, т.е. повышается ее сопротивление, уменьшается адгезия, возникают внутренние напряжения.

Таким образом, чем ниже вакуум и чем больше в остаточной атмосфере вакуумной камеры примеси активных газов, тем сильнее их отрицательное влияние на количество наносимых пленок, а также на производительность процесса.

2.1.4 Методы контроля тонких пленок

Качество тонких пленок оценивают, контролируя толщину пленки, ее адгезию с подложкой и структуру. Обычно в зависимости от целевого назначения пленок определяется метод контроля и контролируется какой-либо один или два параметра.

Измерения толщины пленок. Определение толщины пленок представляет значительные методические трудности, так как понятие «толщина» в применении к слоям от 50 до 5 мкм теряет свою определенность. Плотность, удельное сопротивление, оптические свойства пленок и массивных материалов различаются. Поэтому измеренная каким-либо методом толщина будет эффективной, отличающейся от значения «истинной» толщины. Значения эффективных толщин пленки, полученные различными способами измерения, не совпадают. При выборе способа определения эффективной толщины следует ориентироваться на требования, связанные с использованием изготовляемых тонких пленок. Например, при использовании тонких пленок в интерферометрии нередко имеет значение фазовой сдвиг, вносимый наличием пленки, и, следовательно, необходимо знание ее «интерферометрической» толщины. При измерении толщины диэлектрических пленок, применяемых для изготовления пленочных конденсаторов, определяют емкость этих пленок. Наиболее распространенным методами измерения толщины тонких пленок являются: микровзвешивание, многолучевая интерферометрия, наблюдение цвета пленок, измерение электрического сопротивления или емкости, использование кварцевого резонатора, ионизация молекулярного потока.

В основе метода микровзвешивания лежит определение толщины пленок по приращению в весе ?Р подложки после осаждения пленки.

При измерении толщины пленки путем взвешивания принимают, что плотность вещества пленки равна плотности массивного вещества. При этом под эффективной толщиной пленки понимают ту толщину, которую имел бы слой, если бы слой образующий его материал был равномерно распределен по поверхности с плотностью, равной плотности массивного вещества.

В зависимости от чувствительности весов и площади S абсолютная чувствительность метода составляет 1-10 мкм/м2. Из методов многолучевой интерферометрии чаще всего применяют способ полос равной толщины. В основе его лежит получения разности фаз двух когерентных лучей, отраженных от подложки и поверхности пленки. Перед измерением на образце получают так называемую ступеньку - резкую границу пленки на подложке. Это достигается либо с помощью маскирования части подложки при осаждении пленки, либо путем химического удаления части осажденной пленки. Чередующиеся светлые и темные интерферециооные полосы с шагом L как на поверхности пленки, так и на подложке смещены относительно друг друга у границы пленки на величину I. Измерение смещения I производят с помощью микроинтерференционного микроскопа.

Точность измерения составляет 20-30А на лучших интерферометрах и 150-300А на обычных. В отличие от метода взвешивания данный метод применен только для непрозрачных пленок. Если пленка прозрачная, то на пленку и подложку в районе «ступеньки» осаждают дополнительно непрозрачную хорошо отражающую металлическую пленку, например, алюминия. Для уменьшения вносимой погрешности ее толщина должна бать много меньше толщины измеряемой пленки. Для определения толщин диэлектрических пленок, таких как Sio2, Si3N4, Al2O3 и др., на отражающих подложках наблюдают цвет пленки. Если падение луча на поверхность пленки близко к нормальному и пленки достаточно тонкие (менее 1 мкм), то расстояние между соседними интерференционными максимумами столь велико, что вся пленка окрашивается равномерно в один цвет. С увеличением толщины пленки окраска ее меняется, причем, один и тот же цвет повторяется несколько раз с достижением пленки толщин, кратных л/4. Поэтому для измерения толщины пленки по ее цвету нужно знать не только соответствующую данному цвету длину волны, но и порядок интерференции.

В этом случае под толщиной пленки понимают ту толщину, которую имела бы пленка с показателем преломления, равным n, определенному для массивного диэлектрика.

Чувствительность метода составляет 200-300А. Недостаток заключается в его субъективности - различные люди не наблюдают одного и того же цвета для пленок одинаковой толщины.

Образец, на котором производят измерение толщины пленки, в большинстве случаев непригоден для производства. Поэтому из нескольких одновременно напыляемых в идентичных условиях образцов один служит только для измерения толщины. Его называют «свидетелем». При изготовлении проводящих и резистивных пленок толщину определяют непосредственно в процессе напыления путем измерения продольного электрического сопротивления на «свидетеле», обладающем известными геометрическими размерами. Измерительный прибор (мостовая компенсационная схема) отградуирован в единицах измерения либо поверхностных сопротивлений, либо толщин.

В данном случае под толщиной пленки понимают толщину, которую имел бы слой, если бы удельное сопротивление этого слоя было равно удельному сопротивлению массивного металла. Чувствительность метода 10-50А, предельная толщина измеряемых пленок около 1 мкм. Точность измерения невелика вследствие неопределенности значения р. Для более точного измерения толщины пленок в процессе напыления используют метод кварцевого резонатора, пригодный для любых материалов. Частота колебаний f кварцевого кристалла с массой m линейно меняется с изменением массы осажденного вещества ?m.

Выбор частоты f зависит от диапазона измеряемых толщин пленок. Для тонких пленок и большой чувствительности используют высокие частоты. Чувствительность кварцевого резонатора ?m/?f=10-10 кг/кГц. Применение радиотехнической аппаратуры при f =20Мгц позволяет определить сдвиг ?f=20Гц, что дает возможность измерять приращения массы около 10-8 кг/м2 или 0,1-1А толщины. Практически точность равна 50-100А.

Выпускаемые серийно кварцевые измерители толщин предназначены для измерения толщин тонких металлических, полупроводниковых и диэлектрических пленок в диапазоне толщин от 100А до 5 мкм с точностью +-10%. Приборы позволяют задавать требуемую толщину пленки, после достижения которой подается сигнал на прекращение напыления. Для точного измерения толщины производят градуировку приборов.

Измерение адгезии пленок. В настоящее время не существует доступных промышленных методов точного количественного измерения адгезии тонких пленок с подложками.

Сравнительный контроль адгезии осуществляют путем измерения усилия, которое надо приложить к стальной закругленной игле, для того что бы при движении этой иглы вдоль поверхности пленки вызвать ее отслаивания от подложки. Усилие, при котором пленка отслаивается, характеризует адгезию. Метод примененим для сравнения адгезии пленок постоянной толщины и одного состава. Адгезию металлических пленок с подложкой измеряют по усилию отрыва пленки с напаянным на ее поверхность металлическим цилиндром. В центре свободного торца цилиндра закрепляют гибкий тросик, связанный через рычаг с чашкой весов. Чтобы по усилию отрыва P вычислить адгезию F, нужно точно знать площадь контакта S и исключить перекос цилиндра, вызывающий неравномерное распределение усилия по площади контакта.

F=P/S. (1)

Площадь торца цилиндра составляет около 1мм2. Для получения надежных данных необходимо измерить адгезию несколько раз, каждый раз контролируя, не произошел ли отрыв по месту спая и не растворилась ли пленка в припое.

Контроль и структуры пленок. Изучение структуры тонких пленок сводится к различным методам лабораторного контроля, что позволяет устанавливать связь между физическими свойствами пленок и условиям их осаждения. Наиболее распространенными методами контроля структуры поликристаллических и монокристаллических пленок являются электронная микроскопия, электронография и рентгенография. Эти же методы применяют для исследования аморфных пленок.

Метод электронной микроскопии чаще всего осуществляют с помощью просвечивающий микроскопии, что дает возможность контролировать пленки толщиной 100-1000А. Тонкие пленки получают путем напыления вещества в вакууме на свежий скол кристалла каменной соли. После напыления соль растворяют в воде, а оставшуюся пленку помещают в электронный микроскоп. Наблюдение структуры и дефектов пленки возможны благодаря амплитудному контрасту, который создается главным образом упруго и неупругорассеянными электронами в области углов, лежащих за пределами апертурного угла микроскопа. Электроны, рассеянные на меньшие углы и испытавшие небольшие неупругие потери энергии, образуют светопольное изображение. Темнопольное изображение получают при наклоне конденсорной электромагнитной линзы или путем перемещения апертурной диафрагмы до тех пор, пока дифрагированные пучки электронов не попадут в апертуру микроскопа. Благодаря высокой разрешающей способности (около 10А) и гибкому управлению серийные электронные микроскопы используют для стандартных структурных исследований тонких пленок. В аморфных пленках контролируют сплошность, зернистость, наличие пустот, включений инородных веществ.