logo
Расчет надежности типовых устройств радиоэлектронных средств

2. резервы повышения надежности элементов и возможности их реализации

В сфере разработки и производства элементов закладывается определенный уровень их надежности, характеризуемый значениями показателей надежности. Определение этих показателей производится статистическими методами на основе результатов испытаний элементов при уровнях внутренних и внешних нагрузок, определяемых техническими условиями. При дальнейшем изложении такие показатели надежности будем для краткости называть производственными показателями надежности.

Одни и те же типы элементов эксплуатируются в РЭА различного назначения в составе конкретных электрических схем. В зависимости от уровней нагрузок, характера взаимного влияния режимов работы элементов и схем, конструкции РЭА и условий ее применения элементы данного типа, имеющие одинаковые производственные показатели надежности, могут в различных схемах и различной РЭА обладать значениями показателей, существенно отличающимися от производственных. В связи с этим говорят об эксплуатационных показателях надежности элементов.

Эксплуатационные показатели надежности могут определяться только из статистики работы элементов данного типа в конкретной электрической схеме при конкретных условиях эксплуатации.

При проектировании элементы рассчитываются на определенный срок службы по наработке, который должен обеспечиваться при заданных уровнях эксплуатационных нагрузок. По значению выбираются запасы прочности структуры элементов по всем видам нагрузок, устанавливаются требования к характеристикам применяемых материалов и разрабатывается конструкция элементов.

Допустим, что при проектировании и производстве элементов обеспечивается безотказность, характеризуемая плотностью вероятности случайной наработки элементов до внезапных и постепенных отказов, сосредоточенной около расчетного значения (рисунок 2.1). Функция определяет как бы плотность, с которой распределяются значения случайной наработки до отказа в данной точке , т. е. характеризует среднюю вероятность отказа, приходящуюся на единицу времени около точки . Кроме того, можно указать усредненное отклонение наработки до отказа относительно , при котором в интервале до заключены отказы большинства (99%) элементов.

Рисунок 2.1

Если из партии элементов с такими характеристиками безотказности отбраковать все элементы, для которых ожидается наработка до отказа, меньшая, чем , то все оставшиеся элементы будут работать безотказно в течение не менее чем при эксплуатационных нагрузках, не превышающих расчетных. Построенная на таких элементах РЭА будет иметь наработку до первого отказа не менее .

Имеющуюся потенциальную возможность изготовления всех элементов со сроком службы не ниже заданного на практике реализовать трудно в виду невозможности учета при проектировании всех факторов, обусловливающих отказы элементов; ошибок и отклонений от норм при проектировании и конструировании; применения материалов с параметрами, отличающимися от расчетных; отклонения от норм в технологическом процессе изготовления элементов; высокого уровня затрат на разработку и реализацию мероприятий, обеспечивающих рассмотренные выше характеристики безотказности

Поэтому промышленность выпускает элементы, среди которых имеются экземпляры со сроками службы, существенно меньшими расчетного. В этом случае надежность РЭА существенно зависит от количества комплектующих элементов и основным путем ее повышения является уменьшение числа комплектующих элементов посредством увеличения доли интегральных микросхем в общем объеме РЭА.

Существуют следующие основные резервы повышения производственных показателей надежности элементов: ослабление интенсивности протекания в материалах физико-химических процессов, приводящих к изменению параметров элементов; увеличение запасов прочности структуры элемента по всем видам нагрузок и создание равнопрочной конструкции во всех звеньях структуры; применение новых конструктивных решений и новых принципов создания элементов с большими потенциальными возможностями в отношении повышения надежности; отбраковка элементов со скрытыми производственными дефектами.

В сфере проектирования и конструирования элементов первый резерв реализуется путем применения высококачественных материалов и разработки надежной защиты элемента от воздействия эксплуатационных факторов. Применение материалов с малым количеством примесей, локальных дефектов структуры, защита элементов от проникновения в них веществ окружающей среды и энергетических воздействий приводят к уменьшению числа видов физико-химических процессов и снижению интенсивности их протекания.

Второй резерв реализуется созданием в элементах процессов, компенсирующих накопление изменений в материалах. Например, введение в электровакуумные приборы газопоглотителя компенсирует снижение вакуума за счет газовыделений из материалов. Распыление активирующего слоя бария с поверхности оксидного катода компенсируется процессами образования бария в объеме оксидного слоя и его диффузией на поверхность катода, в результате чего поддерживается его эмиссионная способность.

Использование третьего резерва ограничивается задачей миниатюризации элементов, вытекающей из необходимости уменьшения габаритов и массы РЭА. Обычные активные и пассивные элементы имеют средний объем 0,5--0,7 см3 и массу 1--1,2 г. При таких характеристиках объем РЭА сложностью 107 элементов составит не менее 10 м3, а масса--не менее 10 т. Даже в случае применения бескорпусных активных элементов и сверхминиатюрных пассивных элементов, для которых средний объем составляет 0,1-- 0,2 см3, а масса--0,1 г, приведенные выше цифры уменьшаются всего на порядок.

Увеличение запасов прочности структуры элементов при одновременной их миниатюризации достигается применением новых вы-сокопрочных и высокостабильных материалов, например, для элементов, работающих в схемах преобразования и генерации сигналов большой мощности, а также снижением уровней электрических нагрузок для элементов схем обработки информации, в которых не требуется большая мощность сигналов. Существуют интегральные микросхемы, в которых элементы работают в нановаттном диапазоне мощности.

Примером использования четвертого резерва повышения надежности является создание новых перспективных элементов (объемных резисторов, полупроводниковых конденсаторов и т.д.).

Реализация в сфере производства уровня надежности, заложенного при проектировании и конструировании, определяется степенью технологичности элементов, которая должна учитываться при их разработке, и качеством технологического процесса их производства.

Для организации качественного технологического процесса необходимо осуществлять оперативный количественный контроль надежности производимых элементов. Количественную оценку надежности позволяют получить статистические методы, применяемые при проведении испытаний выборочной партии изготовленных элементов. Однако с повышением надежности элементов эти методы требуют для получения достоверных результатов увеличения объема выборки (количества испытываемых элементов в партии) или увеличения времени испытаний при относительно малых объемах выборки. Уже при современном уровне надежности элементов получение результатов статистического контроля за приемлемое время приводит к существенному увеличению количества элементов в испытываемой партии, что делает экономически невыгодным этот метод контроля. Уменьшение же количества элементов в партии значительно увеличивает время испытаний, что не позволяет оперативно вносить коррективы в технологический процесс и делает такой контроль также экономически нецелесообразным.

Для уменьшения времени получения информации о надежности иногда прибегают к ускоренным методам испытаний, при которых элементы работают в форсированном режиме. Однако в этом случае необходимо знать коэффициент ускорения относительно обычных испытаний. Если коэффициент ускорения неизвестен, то метод ускоренных испытаний дает только качественную оценку надежности. Если такая оценка не выходит за определенные границы, то считают, что технологический процесс идет стабильно.

С увеличением уровня надежности элементов наиболее перспективными методами оперативного контроля становятся методы неразрушающего контроля, позволяющие быстро определять скрытые производственные дефекты изделий и вносить соответствующие коррективы в технологический процесс. Статистические методы позволяют только установить факт уменьшения надежности изделий, а для выяснения причины требуется специальный анализ.

Повышение надежности элементов может быть достигнуто также приработкой их под нагрузкой, приемо-сдаточными испытаниями при жестких критериях отказов и отбраковкой элементов со скрытыми производственными дефектами. Приработка элементов под нагрузкой на заводах позволяет отбраковать отказавшие элементы со скрытыми производственными дефектами и стабилизировать параметры оставшихся элементов. Интенсивность отказов снижается до стабильного уровня, соответствующего периоду нормальной эксплуатации.

Приемочный контроль производят на основании результатов контрольных (приемо-сдаточных) испытаний. Испытания элементов на надежность проводят при типовых электрических и внешних нагрузках, при заданных контролируемых параметрах и критериях годности. Схему, в которой испытывают элементы, выбирают таким образом, чтобы свести к минимуму возможное ее влияние на надежность элементов. В качестве контролируемых параметров выбирают основные параметры, имеющие тенденцию к дрейфу.

Приемо-сдаточные испытания при жестких критериях отказов заключаются в том, что режимы электрических и внешних нагрузок выбирают предельными или близкими к предельным, а критерии годности -- значительно более жесткими, чем при работе элементов в схеме. Производство, поставляющее элементы, которые удовлетворяют жестким приемо-сдаточным испытаниям, обеспечивает и более высокий уровень производственной надежности по сравнению с испытаниями при типовых нагрузках.

Однако надежность может быть повышена и дальше отбраковкой потенциально ненадежных элементов со скрытыми производственными дефектами, не проявившими еще себя в период приработки и испытаний. Такая отбраковка осуществляется методами неразрушающего контроля каждого элемента выпускаемой партии. Эффективность такой программы отбраковки должна оцениваться с учетом экономической целесообразности. Известны случаи, когда снижение интенсивности отказов этим методом от 1/ч до 1/ч приводило к увеличению стоимости элементов в 50 раз, а сроки поставки увеличивались в 2--3 раза.

Уровень эксплуатационных показателей надежности элементов закладывают при проектировании и производстве РЭА и поддерживают, соблюдая правила и режимы эксплуатации. В РЭА элементы входят в состав конкретных электрических схем. Небольшие изменения какого-либо параметра элемента могут привести к сдвигу рабочей точки электрического режима схемы и существенному изменению этого же или другого параметра. Схема по-разному может реагировать на изменение параметров: либо стабилизировать дрейф, либо усиливать его вплоть до лавинного убыстрения этого процесса. Поэтому вопросы стабилизации внутренних процессов в элементах и их электрических режимов приобретают важное значение для получения высокой надежности элементов и РЭА в целом. Таким образом, существенное значение имеет устойчивость схемы к изменению внешних условий эксплуатации и дрейфу параметров элементов.

Поскольку эксплуатационные показатели надежности элементов определяются устройством, в котором они работают, то их в общем случае необходимо относить к конкретному типу устройства с конкретным типом элементов. Более того, конструкция РЭА влияет на надежность элементов, так как она определяет степень защиты их от внешних воздействий, характера теплообмена и т. д. Практика показывает, что для одного и того же типа элемента в зависимости от типа схемы и нагрузочного режима эксплуатационные показатели надежности могут существенно отличаться. Отсюда следует вывод, что эксплуатационные показатели надежности не могут являться объективной и однозначной характеристикой элементов, если они в значительной степени зависят от свойств и характеристик электрической схемы и конструкции устройства.