logo
Расчет транзисторных усилителей

Общие принципы проектирования усилителей на биполярных транзисторах

Транзистором называют полупроводниковый прибор, в котором изменение входного электрического сигнала приводит к изменению сопротивления выходной цепи транзистора. Это свойство транзистора может быть использовано для различных преобразований электрических сигналов (усиление, генерирование, преобразователей формы и т.д.) в электронных стабилизаторах, переключателях и т.п. Существует большое разнообразие транзисторов, отличающихся принципом действия, назначением, мощностью, частотными свойствами и другими признаками.

В данном курсовом проекте используется биполярный транзистор типа n-р-п, и имеющий два р-п- перехода. На рисунке 1а показано условное графическое и буквенное обозначение таких транзисторов на электрических схемах. На рисунке 1б изображена схема подключения внешних элементов, генератора усиливаемого входного напряжения (UВХ) и источника питания (+Un) к выводам транзистора.

Так как эмиттер является общим, то такое включение транзистора получило название схемы включения с общим эмиттером (ОЭ). Это основная схема включения биполярных транзисторов, так как в ней наилучшим образом используются усилительные свойства транзистора. Существуют также схемы включения с общей базой (ОБ) и общим коллектором (ОК), которые используются реже.

Рисунок 1 - Условное графическое и буквенное обозначение биполярных транзисторов типа n-р-n на электрических схемах

Цепь "коллектор-эмиттер" транзистора является силовой цепью, в которую включается резистор коллекторной нагрузки Р, а цепь "база-эмиттер" называют управляющей цепью, к которой подводится усиливаемый электрический сигнал.

По 2-му закону Кирхгофа для транзистора (смотреть рисунок 16) можно записать

(1)

т.е. ток коллектора Iк меньше тока эмиттера Iэ на величину тока базы Iб.

В схеме включения транзистора с ОЭ входной величиной является ток базы, а выходной - ток коллектора.

Рисунок 2 - а) входные характеристики б) выходные или характеристики

Основными статическими вольтамперными характеристиками (BАХ) транзистора в схеме с ОЭ являются:

а) входные характеристики (рисунок 2, а)

при (2)

б) выходные или коллекторные характеристики (рисунок 2, б)

при (3)

Входные характеристики при UKЭ>0 постепенно сгущаются, практически перестают зависеть от этой величины, поэтому в справочниках приводятся две кривые - для UKЭ = 0 В и UКЭ=3 В, либо UKЭ = 5 В.

Выходные характеристики приблизительно равноудалены друг от друга при одинаковых приращениях тока базы, начиная с IБ=0. Однако в дальнейшем они начинают сгущаться по мере приближения к току базы насыщения IБнас. При Iв= IБнас транзистор насыщается, т.е. полностью открывается, и он перестает быть управляемым током базы, т.е. переходит в ключевой режим работы.

Рабочей областью выходных характеристик в режиме усиления является область, ограниченная предельно допустимыми значениями и областями насыщения и отсечки (смотреть линии со штриховкой на рисунке 2, б). В этой области характеристики можно считать практически линейными, а транзистор - линейным элементом.

На входные и выходные характеристики транзистора (смотреть рисунок 2, а и б) существенно влияет температура нагрева транзистора. С ростом температуры они эквивалентно поднимаются вверх (смотреть рисунок 2, б).

В справочниках приводятся электрические параметры (оптимальные или номинальные для каждого типа транзистора), а также предельные эксплуатационные данные. К первым, в качестве основных относятся: статический коэффициент передачи тока (или) в схеме с ОЭ; граничное напряжение UKЭ; обратный ток коллектора IК0; граничная частота fгр коэффициента , т.е. та частота усиливаемого сигнала, при которой коэффициент (или) уменьшается в раза и др.

Усилительный каскад на транзисторе с ОЭ (рисунок 3). Каскад предназначен для усиления только переменных сигналов. К входной цепи усилительного каскада относятся все элементы, подсоединяемые между базой и эмиттером транзистора, а также источник входного сигнала (UBХ).

Рисунок 3 - Усилительный каскад на транзисторе с ОЭ

Выходная цепь каскада включает источник питания Un, управляемый элемент-транзистор VT и резистор R. Эти элементы образуют главную цепь усилительного каскада, в которой за счет протекающего коллекторного тока iK , управляемого током базы iб , создается усиленное переменное напряжение на выходе схемы Uвых. Остальные элементы играют вспомогательную роль.

Конденсаторы CI и С2 являются разделительными: CI исключает шунтирование входной цепи каскада цепью источника входного сигнала по постоянному току, что позволяет, во-первых, исключить протекание постоянного тока через источник входного сигнала по цепи + Un-- Rl- внутреннее сопротивление источника ив (на рис.4 не показано) и, во-вторых, обеспечить независимость напряжения на базе U~Bn в режиме покоя, т.е. при отсутствии входного сигнала и=0, от внутреннего сопротивления источника входного сигнала. Назначение конденсатора С2 - пропускать в цепь нагрузки только переменную составляющую напряжения.

Резисторы Rl и R2 используются для задания режима покоя каскада. Поскольку биполярный транзистор управляется током, ввиду малости входного сопротивления транзистора, включенного по схеме с ОЭ, ток покоя в коллекторной цепи Г (смотреть рисунок 2, а) задается соответствующей величиной тока базы сигнала, вносимых транзистором в режиме усиления. Это требование выполняется, если точка покоя П (смотреть рисунок 2, а и б) находится в середине линейного участка входных и выходных характеристик транзистора. Чтобы положение точки покоя оставалось практически неизменным при старении транзистора или воздействии внешних возмущающих факторов, ток I делителя R1-R2 должен быть в 8…10 раз больше необходимого тока покоя базы Iбп.

Резистор Rэ является элементом отрицательной обратной связи, предназначенным для стабилизации режима покоя каскада при изменениях температуры. Конденсатор Сэ шунтирует резистор Р по переменному току, исключая тем самым проявление отрицательной обратной связи в каскаде по переменным составляющим.

Отсутствие Сэ приведет к уменьшению коэффициента усиления каскада [2] .

Рассмотрим работу каскада в режиме усиления, когда на вход каскада подается изменяющееся входное напряжение.

При этом начинают изменяться напряжение Uбэ и ток iб в некоторых пределах, определяемых амплитудой Uвхm и видом входной характеристики транзистора. Причем эти изменения будут происходить относительно точки покоя П (смотреть рисунок 2, а и б). В соответствии с выходными характеристиками транзистора будет изменяться и ток коллектора г, мгновенные значения которого определяются напряжениями. Для дальнейшего анализа режима работы каскада необходимо использовать графоаналитический метод расчета нелинейных электрических цепей, так как транзистор в общем случае является нелинейным элементом.

Составляем уравнение по 2-му закону Кирхгофа для режима покоя, т.е. для постоянных составляющих токов и напряжений:покоя rgn (смотреть рисунок 2, а), протекающего от источника питания Un через резистор R1. Совместно с R2 резистор R1 образует делитель напряжения питания U , часть которого, выделяемая на резисторе R2 , равна значению Uбп (смотреть рисунок 2, а). Выбор значения и определяется требованием минимальных искажений формы входного

(4)

Величина незначительна, поэтому ею для упрощения анализа можно пренебречь, и тогда получаем уравнение

(5)

Выражение (5) является уравнением прямой линии в координатах Iк и Uкэ, т.е. на выходных характеристиках транзистора. Линия, построенная по этому уравнению в координатах IK и Uкэ, называется линией нагрузки каскада по постоянному току (смотреть прямую линию на рисунке 2, б). Точка пересечения этой линии с характеристикой, соответствующей I6п, т.е. точка П, определяет режим работы каскада по постоянному току.

В режиме усиления рабочая точка перемещается вдоль линии нагрузки относительно точки П, определяя тем самым переменные составляющие тока коллектора iк и напряжения UКЭ. Вследствие наличия разделительного конденсатора С2 на выходных зажимах каскада выделяется только переменная составляющая напряжения UКЭ, которая и является выходным напряжением каскада. Графический анализ показывает, что выходное напряжение Uвых и входное Uвх находятся в противофазе, т.е. одиночный усилительный каскад на транзисторе, включенный по схеме с ОЭ, сдвигает фазу выходного напряжения по отношению к входному на 180°. Это одно из основных свойств такого каскада.

Основным показателем любого усилителя является его коэффициент усиления - это величина, равная отношению выходного сигнала к входному.

Коэффициент усиления тока базы h21э, транзистора для схемы включения с ОЭ в статическом режиме является:

h21э=в = Iк / Iб, при Uкэ= const (6)