logo
Ррасчет спектра различных сигналов и их энергетических характеристик

3.1 Общие сведения

Для передачи полезной информации в технике связи обычно используются модулированные сигналы. Они позволяют решить задачи уплотнения линий связи, электромагнитной совместимости, помехоустойчивости систем. Процесс модуляции является нелинейной операцией и приводит к преобразованию спектра канала. При гармоническом сигнале - переносчике это преобразование заключается в том, что спектр полезного сигнала переносится в область несущей частоты в виде двух боковых полос. Если переносчик импульсная последовательность, то такие боковые полосы расположены в окрестностях каждой гармоники переносчика. Значит, продукты модуляции зависят от полезного сигнала и от вида сигнала-переносчика.

К основным характеристикам модулированных сигналов относятся энергетические показатели и спектральный состав. Первые определяют помехоустойчивость связи, вторые, прежде всего, полосу частот, занимаемую сигналом. Классический модулятор имеет два входа. На один подается гармонический сигнал - переносчик, на другой - полезный сигнал с кодера. Ранее мы подробно познакомились с характеристиками последнего , представляя его случайной двоичной последовательностью. Сейчас же введем для него другую математическую модель. Предположим, что полезный сигнал представлен двоичной последовательностью 0, 1, 0, 1 и т.д. Вид такого сигнала и соответствующих ему модулированных сигналов показан на рис. 3.1.

Перейдем к спектрам модулированных колебаний. Так как мы предположили, что полезный сигнал регулярная импульсная последовательность, её можно представить рядом Фурье [47]:

(3.1)

где постоянная составляющая полезного сигнала; , амплитуда и фаза соответствующей n-ой гармоники. Именно под действием этого сигнала и меняются параметры переносчика.

Рис. 3.1

Модулированный сигнал

При фазовой модуляции частотный состав колебаний определяется по следующей формуле:

(3.2)

где - индекс модуляции;

1 - частота первой гармоники полезного сигнала.