logo
Сегнетоэлектрики, их свойства и применение

6.2 Линейные свойства

В сегнетоэлектрических преобразователях используются большие значения пьезоэлектрических коэффициентов вблизи температуры перехода. По сравнению с несегнетоэлектрическими пьезоэлектрическими веществами сегнетоэлектрики обладают более высокими коэффициентами электромеханической связи, но вместе с тем имеют сравнительно высокие диэлектрические потери. В одних устройствах, например в ультразвуковых генераторах, громкоговорителях или импульсных генераторах со звуковыми линиями задержки, преобразователи предназначаются для преобразования переменных или импульсных электрических сигналов в соответствующие механические смещения. В других устройствах, например в ультразвуковых детекторах, тензометрах, микрофонах, звукоснимателях и устройствах для измерения вибраций, преобразователи предназначаются для преобразования малых механических смещений в электрические сигналы.

Преобразователи могут быть весьма малых размеров - порядка 1 мм и менее. Описан вибрационный тензометр, который дает электрическое напряжение 100 мВ при механическом смещении L/106, где L -- его размер в сантиметрах. Этот сигнал в 100 раз выше, чем в случае резистивного тензометра. Высокая диэлектрическая проницаемость сегнетоэлектриков здесь также является преимуществом, так как позволяет даже при низких частотах получить низкий электрический импеданс прибора (низкий импеданс часто упрощает измерения электрических сигналов). Отметим также, что из сегнетоэлектрической керамики можно изготавливать элементы самых разнообразных форм (рис. 16), например, нетрудно изготовить устройство, фокусирующее излучаемые акустические волны в любом нужном месте. Для того чтобы использовать самые высокие значения пьезоэлектрических коэффициентов, необходимо температуру поддерживать постоянной с высокой точностью. Но это не всегда легко, особенно в тех случаях, когда к сегнетоэлектрику прикладываются сравнительно большие электрические сигналы; в этих случаях становится существенным тепло, выделяемое в результате потерь на гистерезис (оно пропорционально площади петли гистерезиса). Однако во многих случаях пик нужного параметра удается сгладить, что позволяет отказаться от необходимости прецизионного термостатирования. Нередко аномально высокие значения коэффициентов можно использовать не только ниже температуры перехода, но и выше нее.

Пьезоэлектрики обычно применяются для стабилизации частоты генераторов или же используются в качестве элементов узкополосных фильтров. В основе этих применений лежит тот факт, что пьезоэлектрический образец имеет собственную резонансную частоту, определяемую его геометрией. Образец с электродами эквивалентен вблизи резонанса контуру, состоящему из цепочки последовательно соединенных элементов L, С и R, параллельно которой включен конденсатор С0. Такой образец при достаточно тщательном изготовлении может обладать очень высокой добротностью Q. Если требуется высокая стабильность частоты, то не следует использовать в качестве резонаторов сегнетоэлектрики, так как их свойства сильно меняются с температурой. В таких случаях наиболее подходящим материалом обычно по-прежнему остается кварц. Геометрия резонаторов зависит от требуемой частоты. Для работы в области частот порядка нескольких мегагерц применяют монокристаллические пластинки, толщина которых соответствует половине длины акустической волны. Для работы на невысоких частотах применяют бруски определенной ориентации. Для титаната бария размер в несколько миллиметров отвечает механическому резонансу на частоте порядка 1 МГц. Если преобразователь поместить в жидкость или присоединить его к твердому телу, то величина преобразуемой электрической энергии на выбранной частоте возрастет.

Сегнетоэлектрики обладают большой нелинейностью, и это важнейшее их свойство обеспечивает им множество других применений. Однако в описанных выше устройствах это свойство не играет существенной роли; более того, в большинстве случаев его влияния следует избегать. В частности, приложенное к сегнетоэлектрику переменное электрическое поле должно быть недостаточным для его переполяризации. Тем не менее типичное значение преобразуемой мощности составляет 100 Bт/см2 в 10%-ной области частот в мегагерцевом диапазоне.

В микрофонах и звукоснимателях резонансные явления нежелательны. Для работы в воздухе используют образцы, испытывающие деформации изгиба или кручения; они имеют более низкий механический импеданс и испытывают большие механические смещения. Такие преобразователи обычно состоят из двух или более соединенных вместе образцов, ориентация которых такова, что получается большой сигнал, когда один образец удлиняется, а другой укорачивается, В итоге заданному электрическому сигналу соответствует большее поперечное механическое смещение. Частота составного преобразователя низка (она лежит в области звуковых частот), а температурная зависимость его чувствительности ниже, чем у подобных преобразователей других форм.

Высокие значения диэлектрической проницаемости сегнетоэлектриков вблизи температуры перехода позволяют использовать их в миниатюрных конденсаторах. Миниатюрные детали необходимы, например, в случаях, когда нужно сохранить низкие значения индуктивности цепи. Имеющиеся недостатки аналогичны описанным выше. Для поддержания постоянной емкости необходима стабилизация температуры, поэтому такие конденсаторы непригодны для использования в тех случаях, когда требуется очень стабильное значение емкости (например, в цепях настройки). Приложенный электрический сигнал должен быть малым, так как вследствие нелинейности диэлектрическая проницаемость изменяется с изменением амплитуды сигнала. По той же причине приложенное постоянное поле смещения изменяет емкость конденсатора. В обычных цепях это обстоятельство нежелательно, но в других применениях оно, как мы увидим ниже, является преимуществом. «Сглаживание» температурной зависимости е, применяемое для повышения температурной стабильности, приводит одновременно к уменьшению максимальной величины диэлектрической проницаемости, но даже это уменьшенное значение может оставаться еще очень высоким. Тангенс угла потерь в таких сегнетоэлектриках обычно порядка 0,01.

В случаях, когда очень большая нелинейность нежелательна, можно использовать материалы с высоким значением Т0 (напомним, что нелинейность максимальна вблизи Т0). При высоких температурах керамику часто нельзя использовать из-за уменьшения ее сопротивления. Для конденсаторов емкостью 0,1 мкФ, изготовленных на основе керамических пленок, выше 100° С было достигнуто сопротивление до 200 МОм. При емкости до 0,01 мкФ можно изготовить такие пленки с напряжением пробоя порядка 1 кВ.

Изменение с температурой и нелинейность свойств лежат в основе других практических применений сегнетоэлектриков. Изменение диэлектрической проницаемости и, следовательно, емкости сегнетоэлектриков с температурой используется для дистанционного измерения температуры и для измерения излучаемых тепловых потоков. Предложено также использовать сегнето-электрики в качестве детекторов инфракрасного излучения, так как они реагируют на излучение в широкой спектральной области. Как известно, в резистивных болометрах джонсоновский шум всегда является проблемой; диэлектрические же болометры нерезистивны. Благодаря резкому изменению диэлектрической проницаемости с температурой сегнетоэлектрики, по-видимому, весьма пригодны для использования в качестве болометров.