logo
Выращивание плёнки GeSi и CaF2 на кремниевых подложках

ВВЕДЕНИЕ

В настоящее время микроэлектроника столкнулась с трудностями на пути дальнейшего уменьшения размеров и увеличения быстродействия элементов ИС. Причём, если проблему уменьшения габаритов приборов ещё удаётся решать (сейчас возможно создание элементов размерами порядка десятков нанометров), то дальнейшее увеличение быстродействия приборов ограничивается физическими свойствами кремния, являющегося основным материалом современной микроэлектроники. Несмотря на все несомненные достоинства кремния, такие как широкая распространённость материала в природе, наличие химически устойчивого природного окисла SiO2, изученность физических, химических и механических свойств, у кремния есть существенный недостаток, а именно небольшая подвижность носителей заряда, что и является основной причиной ограничивающей применение Si в создании СВЧ приборов на его основе. В связи с этим в настоящее время проводятся попытки внедрения в полупроводниковое производство новых материалов и технологий.

Так, чрезвычайно перспективным видится использование ГС на основе GeSi/Si в качестве искусственных подложек для роста GaAs - в перспективе это может привести к совмещению приборов, создаваемых на основе кремниевой технологии, с оптоэлектронными приборами, основным материалом для которых является GaAs. Ключевым элементом такого совмещения являются буферные слои на основе GexSi1-x , позволяющие создавать на их поверхности полностью релаксированные совершенные слои твёрдого раствора германий-кремний с х вплоть до 1.

Ещё одним перспективным направлением использования плёнок твёрдых растворов GeSi является их использование в качестве материалов активной зоны в транзисторах (базовые области в биполярных транзисторах и каналы в МДП структурах). Преимущества таких приборов по сравнению с созданными на основе кремния настолько велики, что ведущие производители интегральных схем уже объявили об их использовании в своих технологических маршрутах по выпуску чипов для СВЧ-электроники и схем памяти с использованием КМОП-технологии [1]. Созданы полевые транзисторы работоспособные до частот 70 - 80 ГГц [2].

Одним из основных направлений развития микроэлектроники сегодня является использование слоёв кремний на изоляторе (КНИ). Существует несколько технологических направлений получения КНИ структур: кремний на сапфире (КНС), SIMOX, SMART CUT и другие. Эпитаксиальные диэлектрические пленки CaF2, SrF2, BaF2 также могут быть использованы при разработке и изготовлении перспективных ИС как в качестве разделительного, так и подзатворного диэлектриков. Использование пленок эпитаксиальных диэлектриков делает возможным создание КНД структур, содержащих квантовые точки, формирующиеся по механизму Странского - Крастанова. Такие структуры позволяют осуществлять совместное формирование опто- и микроэлектронных устройств, а также использовать эффект квантового туннелирования. Как эпитаксиальный изолятор, флюорит (CaF2) перспективен для создания радиационно-стойких электронных приборов, резонансно туннельных диодов и транзисторов. Эпитаксиальные фториды щелочноземельных металлов также используют в качестве изолирующих буферных слоёв для изготовления многоэлементных инфракрасных и радиационных датчиков на кремниевых подложках.