Усилитель мощности миллиметрового диапазона длин волн

дипломная работа

1.1 Применение ЛБВ в радиолокационно-связной аппаратуре

Лампы бегущей волны продолжают оставаться одним из важнейших комплектующих элементов, определяющих технический уровень спутников связи. Этот тип ЭВП обладает превосходными рабочими и эксплуатационными характеристиками:

широкой полосой рабочих частот,

большим коэффициентом усиления и КПД,

выходной мощностью от десятков до сотен ватт,

высокой устойчивостью к внешним воздействиям,

термостабильностью параметров

высокой надежностью при долговечности до 100 тыс. ч и более.

Они допускают эксплуатацию в гораздо более жестких режимах, чем твердотельные приборы.

Направления работ по повышению технического уровня ЛБВ, определяются потребностями развития систем связи . С целью удовлетворения этих потребностей ведутся как перспективные исследовательские работы, обеспечивая высокий технический уровень своей продукции, так и опытно-конструкторские разработки для комплектации новых систем связи и промышленное производство разработанных ранее ЛБВ [3].

Результаты разработки и особенности технологии производства ЛБВ

В последние годы наибольший объем работ, был направлен на повышение надежности, ресурса и КПД ЛБВ, улучшение спектра и фазовых характеристик ее выходного сигнала, улучшение массогабаритных параметров. Для этого были исследованы пути увеличения эффективности энергообмена в пространстве взаимодействия ЛБВ с широкополосными электродинамическими структурами и возможности рекуперирования остаточной энергии электронных потоков с широким спектром энергий электронов.

В таблице 1.1 приведены основные параметры широкополосных ЛБВ непрерывного действия, разработанных за последние 10 лет. Описание конструкции и характеристик некоторых из них позволяют составить представление о том, как практически решается задача оптимизации основных характеристик широкополосных спиральных ЛБВ.

Таблица 1.1- Современные ЛБВ

Прибор

F,ГГц

P,вых,Вт

Кус,Дб

Uсп,кВ

Iк,мА

Uк,кВ

Размеры, мм Масса, кг

Охлаждение

УВ-А3001

1...2

400

40

5

440

3,2

1040х82х86

10

Жидк.

УВ-АЗ002

1...2

1000

30

8.3

840

6

977х88х128

14

Жидк.

УВ-АЗООЗ

2...4

400

40

5.4

440

3.4

642х82х86

7

Жидк.

УВ-А3004

2...4

1000

30

9.2

840

6,5

862х100х128

12

Жидк,

УВ-АЗООб

4...8

180

40

7.5

250

4.5

500х100х75

3

ВОЗД.

УВ-А3008

8...12

200

35

7.5

250

4.5

450х100х75

3

Конд.

УВ-А3018

7,5.. 18

250

33

10.4

330

6.5/3

450х55х75

3

Конд

УВ-А3020

18..26

10

30

10

40

5

350х54х80

2.0

ВОЗД

УВ-А3021

26...40

10

35

11

100

6

350х54х57

2,0

Конд.

Лучшие результаты получены в лампах со спиральными замедляющим

и системами (ЗС) малого диаметра, в которых для снижения СВЧ-потерь используется спиральный проводник прямоугольного сечения из материала МАГТ-0,2 с проводимостью по постоянному току, близкой к проводимости меди (не менее 85%). В таких ЗС реализованы схемы согласования фазовых скоростей в СВЧ волновом пакете с энергетическими характеристиками электронного потока вдоль пространства взаимодействия лампы, обеспечивающие передачу СВЧ-полю на частоте первой гармоники 60... 75% энергии электронов компактного сгустка, содержащего до 80% электронов на периоде СВЧ-волны [A1] .

Высокая эффективность энергообмена в пространстве взаимодействия, низкие потери СВЧ-мощности в ЗС и удобный для многоступенчатого рекуперирования спектр энергий электронов в электронном потоке на входе в коллектор при применении новых конструкций спиральных ЗС позволили увеличить электронный КПД в средней части сантиметрового диапазона до 30... 36% , а технический КПД ЛБВ с трехступенчатым коллектором электронов - до 56%. При этом были улучшены и другие параметры, влияющие на качество выходного сигнала усилителя [4]:

относительный уровень выходной мощности на частоте второй гармоники снизился до минус 25 дБ, максимальное значение коэффициента амплитудно-фазовых преобразований при изменении входных мощностей от нулевой до входной мощности, соответствующей режиму насыщения, уменьшилось до 6 град/дБ.

Полученные данные позволили сделать вывод, что в ЛБВ с электронным КПД более 30% при сопровождении электронного потока в периодических магнитных полях может быть достигнуто токопрохождение на коллектор в динамическом режиме более 97%. Увеличение электронного КПД привело к уменьшению удельного токоотбора с поверхности катода и увеличению долговечности ЛБВ [A2]. Последующее увеличение долговечности до 100 тыс ч и более стало возможным после разработки специальных технологических процессов, методов контроля качества, обеспечивающих производство основных узлов ЛБВ повышенной надежности металлокерамических, катодных, ЗС, узлов связи и МПФС.

Основные электрические параметры ряда приборов:

Рвых - выходная мощность на частоте первой гармоники,

Ky - коэффициент усиления,

I 0 -ток катода (суммарный ток электродов),

N - количество ступеней коллектора.

М - масса,

Д - долговечность,

Они приведены в таблице 1.2. В ней представлены данные из технических условий, которые, как правило, обеспечиваются конструкциями и технологией с большими производственными запасами. Результаты разработки образцов ЛБВ с КПД 60% и долговечностью 150...200 тыс. ч

Выполненные. исследования показали возможность создания и освоения производства ЛБВ средней мощности сантиметрового диапазона с долговечностью 150... 200 тыс. ч и КПД более 60% . Важнейшее условие обеспечения работы ЛБВ в течение 200 тыс. ч. - повышение эмиссионной долговечности катода. Необходимая эмиссионная долговечность достигается в двухкамерных металлопористых катодах при плотности токоотбора с эмитирующей поверхности до 1 А/см2.

В результате первой серии испытаний экспериментальных образцов ЛБВ нового поколения было обнаружено, что после наработки более 100 тыс. ч могут возникать отказы приборов из-за снижения поверхностного сопротивления керамических деталей металлокерамических узлов электронной пушки, а после наработки 100... 150 тыс. ч среди приборов с большой токовой нагрузкой на ЗС могут возникать отказы по снижению выходной мощности.

Таблица 1.2- Параметры ЛБВ

Тип

Диапазон частот, ГГц

Рвых. Вт

Ку.дБ

Uзс. кВ

Iо, мА

N, шт

Кпд,%

М,кг

Д, ч

УВ-481

3,4...3,9

40

42

3,5

70

3

45

2,6

57500

УВ-А2002

3,4...3,9

80

42

3.7

130

3

45

2,6

55000

УВ-509

7,0...8,0

40

40

4,0

40

3

50

0,8

77000

УВ-А2006

11,4...11,7

22

40

5.0

40

3

40

1,9

55000

УВ-А2008А

11.7...12,5

100

48

6.5

140

5

56

1.8

100000

УВ-А2008

11.7...12,5

150

50

6,5

160

5

55

1,8

100000

УВ-А2010

13,4...14,0

50

50

5,6

55

3

40

2,0

77000

УВ-485

14,5...15,5

40

50

5,6

55

3

40

2.0

55000

Снижение поверхностного сопротивления керамических деталей в электронной пушке связано с накоплением на их поверхности проводящих материалов, испаряющихся с нагретых поверхностей катода. Для устранения этого эффекта разработаны электронные пушки, в которых керамические детали защищены экранами от попадания на них испарившихся с катода материалов. Надежность этих пушек подтверждена испытаниями, проведенными по методике ускоренных испытаний в специальных режимах в течение времени, эквивалентного наработке более 300 тыс. ч.

Механизм снижения выходной мощности также связан с переносом вещества с поверхности нагретых частей спирали на диэлектрические опоры ЗС. При незначительных тепловых нагрузках на спираль время, в течение которого могут быть обнаружены негативные последствия для ЗС со спиралью из МАГТ-0,2, превышает 1 млн. ч. В противном случае это время может сокращаться в зависимости от температуры спирали в десятки и более раз. Возрастание СВЧ-потерь в результате металлизации диэлектрических опор приводит к увеличению тепловой нагрузки на спираль и увеличивает скорость деградации параметров такой ЛБВ [A3].

Добиться необходимого уменьшения скорости переноса вещества с поверхности спирали на опоры ЗС можно улучшением теплоотвода от спирали ЗС и уменьшением токовой нагрузки на спираль. В разрабатываемых ЛБВ улучшение теплоотвода достигается применением деталей из материалов с высокой теплопроводностью, например медных оболочек ЗС , и применением пластичных материалов для создания необходимых тепловых контактов в местах сопряжения теплоотводящих элементов конструкции. Уменьшение токовой нагрузки, как следует из анализа токопрохождения в ЛБВ с электронным КПД более 30%, возможно за счет улучшения токопрохождения в статическом режиме и уменьшения тока, возвращенного из коллекторов. Такая работа была выполнена на основе метода конечных элементов при моделировании электронного потока в аксиально-симметричных узлах ЛБВ .

Разработанные ЛБВ средней мощности сантиметрового диапазона отличаются высоким техническим уровнем, КПД различных типов ЛБВ принимают значения 45... 55 % , а долговечность достигает 100 тыс. ч. Указанные значения КПД получены при использовании ЗС с = 0.8...0,9 и малыми СВЧ-потерями, долговечность ЛБВ обеспечивается надежностью конструкций узлов и особенностями технологии, включающей специальные методики прогнозирования их надежности и ресурса. Исследованы пути увеличения КПД ЛБВ до 60% и долговечности до 200 тыс. ч. Разработаны и испытаны образцы ЛБВ с КПД 60... 64% и долговечностью более 150 тыс. ч

Первые разработки спиральных ЛБВ с шириной полосы более октавы позволили определить, что главным препятствием по расширению полосы рабочих частот является взаимодействие на частотах, кратных частоте основного сигнала (высших гармонических составляющих (ВГС)). В результате многочисленных исследований было установлено, что все многообразие средств подавления ВГС, причем с достаточно эффективной передачей их энергии основному сигналу, реализуется. с помощью единственного метода - метода компенсации . Он заключается в том, что на входе или в пространстве взаимодействия самой ЛБВ формируется сигнал, насыщенный гармониками. противофазными гармоникам, образующимся в результате нелинейного взаимодействия по основному сигналу [5].

Наиболее просто он реализуется в усилительных цепочках на ЛБВ, в которых между каскадами устанавливается так называемый фазовый компенсатор (отрезок длинной линии с максимально крутой дисперсией), который изменяет фазовый сдвиг между основным сигналом и его гармониками на необходимую величину (как правило, от 90 до 180°). Для повышения устойчивости цепочки между каскадами фазовый компенсатор может быть совмещен с ЛБВ-вентилем. основанным на взаимодействии отраженного СВЧ-сигнала с быстрой волной пространственного заряда. Именно такое построение усилителя позволило впервые достичь уровня мощности порядка 1 кВт в диапазоне 1.8 ГГц с мгновенной полосой частот до 1,5...2 октав.

Для осуществления метода компенсации в одной ЛБВ необходимо обеспечить определенные условия взаимодействия широкополосной ЛБВ.Выбор параметров выходного участка пространства взаимодействия является главной задачей при проектировании широкополосной ЛБВ, поскольку именно он определяет выходную мощность и КПД, уровень нелинейных искажений и ВГС. Наконец, от выбранной модели подавления гармоник и передачи их энергии полю основного сигнала определяются требования и к другим участкам прибора. Характерны два варианта энергообмена между ВГС и основным сигналом:

первый - при равенстве фазовых скоростей возмущенных волн поля на частотах первой и, как правило, второй гармоник, что соответствует слабой нормальной дисперсии ;

второй - когда эти скорости существенно различаются (большая нормальная дисперсия и нулевая или аномальная дисперсия). В первом случае для реализации процесса компенсации необходимо создать специальный компенсирующий сигнал; во втором по мере изменения по длине фазовых соотношений (из-за упомянутой выше разности скоростей) гармоники автоматически попадают в фазу оптимального энергообмена с основным сигналом.

Вместе с тем высокий уровень гармоник в слабонелинейном режиме, повышенная неравномерность амплитудно-частотной характеристики, обусловленная скачком фазы поля, показывают, что этот метод сложен для реализации в сверхширокополосных ЛБВ .

Оптимизация пространства взаимодействия велась в октавном диапазоне: в результате технический КПД при одноступенчатой рекуперации превысил 30%, а уровень ВГС в режиме насыщения уменьшился до 10 Дб.

Коэффициент усиления и собственные шумы широкополосных ЛБВ

Одним из главных ограничений коэффициента усиления в широкополосных ЛБВ является требование минимизации уровня собственных шумов в рабочей полосе частот. Эти два параметра связаны известным соотношением

(1)

где Рш - интегральный шум в рабочей полосе ();

k =1,38-10-23постоянная Больцмана;

То =293 К -шумовая температура;

Кш коэффициент шума;

Ку-максимальный в полосе частот коэффициент усиления прибора в линейном режиме работы;

Кф- коэффициент формы АЧХ, лежащий обычно в пределах 0,3... 0,5.

Из анализа (I) видно, что возможны два направления работ по уменьшению уровня шумов при заданных значениях коэффициента усиления и полосы усиливаемых частот: уменьшение коэффициента шума и минимизация перепада коэффициента усиления в диапазоне частот (определяемая значениями Кумах и Кф)

Зависимость коэффициента шума ЛБВ средней и большой (более 20 Вт) мощностей от выходной мощности Рвых [Вт] может быть выражена в следующем виде:

(2)

где Рид - выходная мощность прибора по ТУ, Вт.

Связь между Кш и минимально возможным коэффициентом шума Кшmin быть представлена в виде :

(3)

где S и В- диаметры катода и электронного пучка

Вытекающая из (3) очевидная рекомендация по уменьшению диаметра катода связана с увеличением удельного токоотбора н, как следствие, со снижением долговечность прибора и поэтому далеко не всегда применима. На практике при конструировании и изготовлении электронно-оптической системы необходимо предпринять все меры к тому. чтобы снизить разброс скоростей электронов, исключить возможность эмиссии с боковых поверхностей катода и других электродов пушки. Как правило, при настройке прибора в МПФС приходится предпринимать специальную юстировку по уровню шума, Однако все эти меры не позволяют кардинально изменить коэффициент шума и достигнуть нижнего предела допуска [6].

Более широкие возможности по уменьшению собственных шумов ЛБВ заложены в оптимизации АЧХ прибора Каждый участок пространства взаимодействия, работающий в линейной и слабонелинейной областях взаимодействия, конструируется таким образом, чтобы обеспечить минимальный период коэффициента усиления в заданном диапазоне частот. Освоение управлением дисперсией позволяет использовать для этой цели разнообразные комбинации скачков фазовой скорости и дисперсии, реализуемые с помощью изменения шага и диаметра спирали, формы керамических и металлокерамических опор, диаметра и формы экрана.

В более коротковолновых ЛБВ из-за отсутствия к началу их разработки приемлемого конструкторско-технологического решения по управлению дисперсией такие средства не применялись. В результате интегральная мощность шума таких приборов на 1 - 2 и более порядков выше, чем в длинноволновых ЛБВ при тех же значение коэффициента усиления. (таблица1.3)

Таблица 1.3- Параметры ЛБВ

Тип

ЛБВ

УВ-

А3001

УВ-

А3002

УВ-

А3003

УВ-

А3004

УВ-

А3009

УВ-

А349А

УВ 3018

F,ГГц

1...2

1...2

2..4

2...4

8...18

8…18

7,5…18

Рвых.Вт

400

1000

400

1000

50

100

250

Ку,Дб

40

30

40

30

50

40

33

Pш, мВт

10

1

10

1

2000

1000

180

Комплексированные устройства

При создании таких устройств могут решаться различные задачи, чаще всего оптимизируются высокочастотные характеристики СВЧ-усилителя и согласование СВЧ-приборов с источниками питания. Работы в этих направлениях ведется с начала семидесятых годов, и сегодня серийно выпускаемые комплексированные изделия используются в различных радиоэлектронных системах гражданского и военного назначениея. Одними из первых комплексированных устройств были упомянутые выше усилительные цепочки в составе: широкополосная ЛБВ с высоким коэффициентом усиления, «ЛБВ-вентиль», совмещенная с фазовым компенсатором, и «прозрачная» для СВЧ-сигнала ЛБВ с малым (6...8, дБ) коэффициентом усиления. Они позволили качественно улучшить характеристики СВЧ-усилителей и в значительной степени иллюстрируют методологию комплексирования, в которой заложены три основополагающих, на наш взгляд, принципа: каждый-элемент комплексированного устройства ответственен за одну или несколько функций всего устройства-параметры каждого элемента согласованы с параметрами других элементов и обеспечивают их нормальное функционирование [A4];

Предполагается оптимальное конструирование устройства в целом с интеграцией элементов конструкции, систем охлаждения, контроля и т.д.

В соответствии с этими принципами были разработаны комплексированные устройства на основе широкополосных спиральных ЛБВ (таблица 1.4).

Оптимизации по СВЧ параметрам., как правило, подлежала наиболее распространенная схема усилителя 1, Изображенная на рис.6 и включающая в себя корректор усиления, транзисторный усилитель 2, широкополосную ЛБВ 3 и источник питания (ИП) 4.

Рисунок 6- Комплексированные устройства

Корректор коэффициента усиления - пассивный, аттенюатор, обеспечивающий частотную характеристику затухания, аналогичную (по форме) частотной зависимости общего коэффициента усиления ЛБВ и транзисторного усилителя, представляет собой цепочку резонаторов с регулируемой добротностью и выполняется на основе либо коаксиальной, либо полосковой линии. В результате комплексированное устройство характеризуется постоянством коэффициента усиления во всем рабочем диапазоне частот.

Современные твердотельные усилители (ТТУ) большой мощности имеют коэффициент шума не более 10 дБ, что существенно ниже, чем у аналогичных ЛБВ, поэтому при распределении усиления между ТТУ и ЛБВ необходимо стремиться к снижению коэффициента усиления ЛБВ, т. e к увеличению выходной мощносги ТТУ. Именно поэтому корректор усиления целесообразнее устанавливать до ТТУ и ЛБВ, а не между ними [7].

Все источники питания для широкополосных ЛБВ построены по схеме преобразования частоты питающей сети, имеют стабилизированные источники питании замедляющей системы, анода и коллектора- отвечают требованиям- предъявляемым к соответствующей их применению аппаратуре по механическим и климатическим воздействиям снабжены устройствами защиты и контроля.

Таблица 1.4-Параметры ЛБВ

Частота ГГц

Рвых

Вт

Ку, дБ

Состав

Габаритные размеры мм

Maccа кг

Сеть

0.8…2

200

60

ТТУ-коррекгор-

ЛБВ-ИП

ЛБВ - 1040х82х86

10

ИП- 700 х 300 х 350.

45

200В

400 Гц

1…2

1000

54

ТТУ-коррекгор-

ЛБВ-ИП

ЛБВ - 977х82х86

14

ИП- 790 х 320 х 370.

65

200В

400 Гц

2...4

400

40

Коррекгор-

ЛБВ-ИП

ЛБВ - 642х82х86

7

ИП- 700 х 330 х 350.

55

200 В

400 Гц

2…4

1000

50

ТТУ-коррекгор-

ЛБВ-ИП

ЛБВ -862х100х128

12

ИП- 700 х 330 х 350.

65

200 В

400 Гц

7...11

100

35

ЛБВ-ИП

545 X 125 х 195

200В

400 Гц

4…8

100

40

ЛБВ-ИП

545 X 125 х 195

200В

400Гц

12…18

100

27

ЛБВ-ИП

ЛБВ - D70х380

3

ИП 460х100х295

13

200 В

400 Гц

8...18

100

27

ЛБВ-ИП

330х453х100

15

200В

400Гц

27…29

20

40

ЛБВ-ИП

ЛБВ -2 кг

ВИП- 15 кг

220В 50 Гц

ЛБВ миллиметрового диапазона длин волн

При переходе в миллиметровый диапазон конструктивно-технологические проблемы создания ЛБВ pезко возрастают. Основная причина этого -уменьшение поперечных размеров ВЧ пакета ЛБВ и соответственно диаметра ее пролетного канала. что приводит к сложностям формирования и сопровождения электронных пучков, получения эффективного взаимодействия и необходимости решения проблем теплоотвода от спирали. Требование к величинам магнитного поля для осуществления периодической фокусировки электронного пучка малого диаметра заставляет уменьшать его первеанс , что приводит к снижению электронного КПД ЛБВ, чему способствует и быстрый рост собственных распределенных потерь ЗС. Ограничения величины выходной мощности ЛБВ миллиметрового диапазона связаны с проблемами эффективного геплоотвода от элементов ЗС. Тепловые нагрузки при продвижении в коротковолновую область возрастают вследствие увеличения распределенных поттерь и токооседа-ния. а элементы, в которых выделяется и по которым отводится тепло, становятся все миниатюрнее.

Для решения задач создания ЛБВ миллиметрового диапазона был проведен комплекс конструкторско-технологических разработок. Основное внимание было уделено решению тепловой задачи и разработке базовых конструкций ЭОС. позволяющей транспортировать электронный пучок в пролетном канале, диаметр которого составляет 0,6 мм при токе до 100 мА. Благодаря созданной оригинальной конструкции МПФС достигнутое значение токопрохождения составляет 98%.

Снижение собственных распределенных потерь в ЗС рассматривалось как эффективный способ увеличения электронного КПД ЛБВ, с одной стороны, и снижения тепловых нагрузок на спираль, с другой. Известно несколько способов уменьшения потерь, но все они сводятся к использованию материалов или покрытий с высокой электрической проводимостью. Применение медной плющенки для изготовления спиралей предполагает применение пайки ВЧ-пакета, которая является единственно возможным способом закрепления спирали, изготовленной из такого неформоустойчивого материала, как медь. Пайка одновременно обеспечивает почти идеальный теплоотвод от спирали, что снижает ее температуру в рабочем режиме и, следовательно, предотвращает дальнейший рост ВЧ-потерь при разогреве спирали. Однако эксперименты показали, что ВЧ пакеты, изготовленные с применением пайки, имеют большой разброс параметров из-за слабо контролируемой величины галтелей образующихся в процессе пайки. Спирали, изготовленные из молибдена или вольфрама с нанесенным покрытием из меди или золота, также оказались малопригодны для использования из-за непрочности покрытия. В результате проведенных исследований оказалось, что наиболее технологичными оказались спирали, изготовленные из полированной вольфрамовой плющенки. Полировка дает снижение ВЧ-потерь- сравнимое с их снижением при использовании спиралей с покрытием. Для снижения ВЧ-потерь и облегчения тепловой задачи в ВЧ пакете была уменьшена диэлектрическая нагрузка за счет использования опорных спиралей прямоугольной формы. Одновременно с работами, направленными на снижение величины тепловых нагрузок за счет улучшения токопрохождения и снижения потерь в ВЧ пакетах, был проведен комплекс работ по обеспечению надежного закрепления ВЧ пакета в оболочках. В результате в качестве базовых методов закрепления ВЧ пакетов в ЛБВ миллиметрового диапазона используются метод холодного обжатия медной оболочки и метод термообжатия. Оба метода обеспечивают хороший тепловой контакт «стержень-оболочка», не уступающий паяному соединению.

Однако снижение тепловых сопротивлений только внутри ВЧ пакета недостаточно для обеспечения надежной работы ЛБВ миллиметрового диапазона. Необходимо решать и внешнюю тепловую задачу.

Разработаны базовые конструкции ЛБВ в миллиметровом диапазоне длин волн с уровнем выходной мощности 10...50 Вт (рисунок 1).

Рисунок 1- Типичная АЧХ ЛБВ миллиметрового диапазона

Разработаны и производятся сверхширокополосных спиральных ЛБВ средней и большой мощностей, а также комплексированных устройств на их основе. Основные технические характеристики проанализированы с позиции их взаимосвязи с особенностями конструкции и технологии изготовления.

Современный этап развития СВЧ-приборов такого класса, характеризующийся успехами в области их миниатюризации и комплексирования совместно с твердотельными устройствами , требует разработки новых конструкторско-технологических работ, решений и подходов.

Делись добром ;)