Интегральные микросхемы

курсовая работа

Введение

Современный этап научно-технического прогресса характеризуется повсеместным внедрением принципиально новой техники. Ускорение научно-технического прогресса в значительной степени зависит от успехов современной микроэлектроники, являющейся современной элементной базой электронных устройств автоматики, телемеханики и связи.

Интегральные микросхемы значительно расширили диапазон применения электронных устройств на железнодорожном транспорте. Они создали возможность для совершенствования систем автоматического регулирования движения поездов, радиосвязи, учета и планирования технологических процессов на железнодорожном транспорте, автоматической локомотивной сигнализации и ряда других.

Развитие науки и ускорение технического прогресса немыслимо без совершенствования вычислительной техники, средств связи и систем сбора, передачи и обработки информации. Решение этого вопроса невозможно без создания цифровых систем и сетей связи.

Наиболее широкое распространение получили в настоящее время многоканальные системы с импульсно-кодовой модуляцией, обеспечивающие организацию по одной линии связи большого числа одновременно и независимо действующих каналов.

Цифровыми называются такие устройства, в которых измеряемая величина автоматически в результате квантования и цифрового кодирования представляется кодовым сигналом, соответствующим измеряемой величине.

Основными преимуществами цифровых систем связи по сравнению с аналоговыми являются высокая помехоустойчивость за счет передачи сообщений двоичными сигналам. Так как в цифровых системах передачи информационные параметры переносчиков в процессе модуляции принимают конечное количество разрешенных значений. Причем переход от одного разрешенного значения к другому осуществляется через конечные промежутки времени. Цифровые методы передачи позволяют значительно повысить помехоустойчивость и уменьшить накопление помех вдоль тракта передачи путем восстановления сигнала. Возможность использования сравнительно простых методов запоминания и хранения сообщений путем записи их в различного рода цифровых регистрах и запоминающих устройствах.

Поэтому, развитие и совершенствование систем автоматики, телемеханики и связи в значительной степени определяется широким внедрением цифровой техники. Для построения систем АТС и управления этими объектами используются управляющие логические устройства, представляющие собой последовательные или комбинационные схемы.

Исторически первыми были созданы релейно-контактные схемы ЛУ, которые и в настоящее время широко применяются в промышленности, особенно на железнодорожном транспорте. Затем появились ЛУ на бесконтактных элементах, которые в своем развитии прошли путь от диодных и ферротранзисторных схем до интегральных. Степень интеграции микросхем непрерывно повышается. Различают микросхемы малой, средней, большой и сверхбольшой интеграции.

ЛУ реализованные на микросхемах, делятся на две группы:

с жесткой логикой;

с программируемой логикой.

ЛУ с жесткой логикой отличаются тем, что при их реализации необходимо создавать проводные связи между отдельными элементами, что приводит к значительным габаритам, трудностями при изменении алгоритмов функционирования, сложностям диагностирования и ремонта.

Программируемые ЛУ, совершенствование которых осуществляется на основе микропроцессоров, в последние годы находят все более широкое применение. Использование программируемых ЛУ становится целесообразным уже в том случае, когда они реализуют задачу, эквивалентную схеме, содержащей 30 реле.

Таким образом, в настоящее время инженеру необходимо знать не только принципы работы дискретных устройств, но знать принципы построения таких устройств. Это необходимо для того, чтобы уметь находить неисправности, знать способы реализации таких устройств в имеющемся элементном базисе. Этой цели служит данный курсовой проект.

Делись добром ;)