logo search
Проект внутризоновой ВОЛП на участке Хабаровск – Амурск

10. Волоконно-оптические усилители

Одним из основных узлов современных волоконно-оптических систем связи со спектральным уплотнением каналов (WDM - и DWDM-систем) является оптический усилитель. Создание широкополосных оптических усилителей (наряду с другими элементами) позволило в конце 90-х годов создать экспериментальные волоконно-оптические системы связи со спектральным мультиплексированием более ста каналов и достичь скорости передачи информации более 1 Тбит/с.

Принцип работы такой системы показан на рисунке внизу.

Рисунок 10.1-Принцип работы волоконно-оптических систем связи со спектральным мультиплексированием

Терабитные скорости передачи в системе достигаются за счет применения временного (ТDМ) и спектрального (WDM) уплотнения (мультиплексирования) сигналов. Полная скорость передачи информации В в мультиплексной системе равна произведению числа спектральных каналов N на скорость передачи информации в одном канале b: В = N·b.

Величина b определяется возможностью технологий временного уплотнения сигналов. В настоящее время практически реализованы системы со скоростями передачи в одном канале до 40 Гбит/с, имеются сообщения о многоканальной экспериментальной системе со скоростями передачи в одном канале до 160 Гбит/с. Число спектральных каналов N в системе, как уже говорилось выше, может достигать 100, с разделением по длине волны Dl между соседними каналами, равными (0,4ё0,8) нм. Таким образом, для реализации протяженых терабитных систем требуются широкополосные оптические усилители, спектральная полоса которых должна, по крайней мере, превышать 30 нм.

В настоящее время для волоконно-оптических систем связи разработаны три типа оптических усилителей: полупроводниковые оптические усилители, эрбиевые волоконные усилители (EDFA) и рамановские (ВКР) волоконные усилители. Полупроводниковые оптические усилители не нашли применения в системах со спектральным уплотнением каналов, поскольку физические особенности их функционирования приводят к неприемлемой величине перекрестных помех между каналами.

Наиболее широкое применение в настоящее время находят волоконные усилители. Современный уровень развития технологий позволяет вводить в световедущую жилу кварцевого волокна различные примеси, в частности, редкоземельные элементы, имеющие спектр люминесценции в окнах прозрачности волокна (l = 1,54 мкм, l = 1,32 мкм и др.) и пики поглощения в области генерации полупроводниковых лазеров (l = 808 нм; l = 980 нм; l = 1480 нм), через которые может осуществляться накачка активированного таким образом оптического волокна излучением этих лазеров.

Самыми распространенными в настоящее время являются эрбиевые волоконные усилители. Главным образом это определяется спектром люминесценции ионов эрбия, лежащим в области длин волн l = 1,54 мкм - области минимальных потерь современных кварцевых световодов. Эрбиевый волоконный усилитель характеризуется следующими основными параметрами:

коэффициентом линейного усиления (усиления при малом входном сигнале);

мощностью насыщения;

спектральной полосой усиления;

рабочей длиной волны;

эффективностью оптического преобразования и мощностью накачки.

Эти характеристики определяются параметрами активированного световода (световода, в который введены примеси эрбия) и оптической схемой-топологией усилителя.

В большинстве схем волоконных усилителей накачка осуществляется непосредственно в торец световедущей жилы активированного волокна.

В последнее время в результате разработки активированных эрбием световодов со сложным профилем показателя преломления и распределения ионов эрбия по диаметру световедущей жилы волокна начали применяться более эффективные схемы усилителей с накачкой через промежуточную оболочку световода.

Оптическая накачка эрбиевых волоконных усилителей осуществляется, как правило, в высокоэффективные полосы поглощения эрбия на длинах волн l " 980 нм и l = 1480 нм. Для накачки используются полупроводниковые лазеры, излучающие на соответствующих длинах волн мощности порядка нескольких ватт. При этом эффективность оптического преобразования может достигать (50-60) %.

Ниже приводятся основные параметры коммерчески доступных эрбиевых волоконных усилителей:

коэффициент линейного усиления (малосигнального) - 30-40 дБ;

мощность насыщения - до 0,5 Вт;

спектральная полоса усиления - 30-40 нм;

диапазон рабочих (усиливаемых) длин волн - (1530-1570) нм;

коэффициент шума - (4-6) дБ.

Современные эрбиевые волоконные усилители обеспечивают усиление модулированных оптических сигналов в полосе до 40 ГГц. Имеются экспериментальные работы, в которых показана возможность усиления модулированных сигналов с скоростями модуляции до 160 Гбит/с.

Для многоканальных волоконно-оптических систем со спектральным мультиплексированием очень важным является спектральная полоса усиления и ее равномерность (плоскостность). Поскольку в настоящее время число каналов достигает 100, и практически трудно реализовать разделение отдельных спектральных каналов с интервалами менее чем 0,4 нм (100 ГГц), то эти параметры начинают оказывать определяющее влияние на полосу пропускания системы или скорость передачи информации.

Полоса пропускания, ее равномерность, динамический диапазон и другие перечисленные выше характеристики усилителя напрямую зависят от параметров активированного световода (его длины, диаметра световедущей жилы, распределения ионов эрбия по диаметру световедущей жилы, степени однородности накачки и т.д.), а также топологии усилителя. В связи с тем, что невозможно создать усилители с одним активным элементом (световодом), полностью удовлетворяющие требования DWDМ-систем, в последнее время стали разрабатываться многокаскадные эрбиевые волоконно-оптические усилители. Так, фирма Lucent Technologies сообщила о создании двухкаскадных эрбиевых волоконных усилителей, имеющих спектральную полосу усиления Dl = 35 нм с максимальным отклонением коэффициента усиления не более 0,6 дБ (или 2,5%) в пределах всей полосы. Современная технология изготовления активированных эрбиевых световодов позволяет сдвигать границы полосы усиления в пределах длин волн Dl = (1530ё1650) нм, перекрывая тем самым С и L полосы DWDМ-систем. Фирмой Алкатель разработан эрбиевый волоконный усилитель для DWDМ-систем, работающий в L спектральной полосе (Dl = 1570ё1603 нм) и имеющий среднее значение коэффициента усиления, равное 34 дБ с отклонением не более 1,8 дБ по всей полосе усиления. При мощности накачки, равной 1,76 Вт, выходная мощность усилителя составляла +26 дБм.

Последним достижением можно, на наш взгляд, считать разработку эрбиевых усилителей на основе теллуридного волокна (легированного примесями теллура), имеющих спектральную полосу Dl = 80 нм, которая перекрывает C и L рабочие полосы DWDМ систем. Именно с помощью таких усилителей была реализована экспериментальная система, обеспечивающая полную скорость передачи информации 3 Тбит/с (19 спектральных каналов емкостью 160 Гбит/с в каждом канале).

Кроме широкой полосы усиления важную роль играет равномерность коэффициента усиления во всей полосе или плоскостность спектральной характеристики. Это обусловлено необходимостью иметь одинаковое усиление сигнала в каждом спектральном канале. Как правило, ни один из усилителей не имеет плоской спектральной характеристики, поэтому выравнивание спектра усиления осуществляется оптическими фильтрами различных типов. В основном усилители, применяемые в системах со спектральном уплотнением, имеют неравномерность коэффициента усиления в пределах не более нескольких децибелл во всей полосе усиления.

В основе функционирования рамановских усилителей лежит явление вынужденного комбинационного рассеяния. При этом усиление оптического сигнала происходит в том случае, если он распространяется в световоде вместе с интенсивной волной накачки, а его длина волны лежит в полосе частот комбинационного рассеяния света в световоде.

Рамановские усилители перспективны для применения в волоконно-оптических системах связи в силу их следующих принципиальных преимуществ:

они могут усиливать на любой длине волны;

в качестве активной среды рамановских усилителей может использоваться сам волоконный световод;

спектр усиления этих усилителей зависит от спектра (длины волны) накачки, поэтому, в принципе, подбором источников накачки можно формировать очень широкую (более 100 нм) полосу усиления;

рамановские усилители имеют низкий уровень шумов.

Основным недостатком рамановских усилителей является их невысокая эффективность преобразования, что требует использования довольно мощного непрерывного излучения накачки (~1 Вт) для получения типичной для оптических систем связи величины усиления сигнала 30 дБ.

Однако в последнее время в литературе появились сообщения о разработке эффективных рамановских волоконных усилителей, в которых в качестве активного световода используются специальные волоконные световоды с большим содержанием германия, обладающие низкими оптическими потерями. Этот факт, а также разработка высокоэффективных рамановских лазеров для накачки усилителя будут играть всё возрастающую роль в волоконно-оптических системах связи.

Перспективным направлением является также разработка и создание гибридных волоконных усилителей, состоящих из различных комбинаций, включающих распределенный рамановский усилитель и эрбиевыйволоконный усилитель. Варианты схем гибридных усилителей приведены на рисунке.

Рисунок 10.2 - Четыре типа гибридных волоконно-оптических усилителей

На рисунке показаны четыре типа оптических систем гибридных усилителей. В схемах типа 1 и 2 используются распределенные рамановские усилители (секции обычного связного волокна) и дискретные эрбиевые волоконные усилители. Дискретный эрбиевый усилитель в схеме 1 представляет собой двухступенчатый эрбиевый усилитель с промежуточным устройством выравнивания коэффициента усиления по спектру (эквалайзером), а в схеме 2 применен одноступенчатый эрбиевый усилитель общий внешний эквалайзер. В схеме 3 используется двухступенчатый эрбиевый усилитель с промежуточным эквалайзером и рамановским усилителем, представляющий собой отрезок высокоапертурного волокна с легированной германием световедущей жилой. Четвертый вариант схемы содержит дискретный рамановский усилитель и внешний эквалайзер.

Разработка данных схем гибридных усилителей позволила получить равномерное усиление сигналов в полосе 82,8 нм с отклонением не более 3 дБ в пределах заданной полосы.

Указанные выше достижения в области оптических усилителей позволили всем основным крупным телекоммуникационным фирмам приступить к разработке и практической реализации мультиплексорных систем связи со скоростными пределами информации 1 Тбит/с и выше.