Топология беспроводных персональных сетей
Для обеспечения низкой стоимости интеграции технологии беспроводной передачи ZigBee в различные приложения физическая реализация аппаратной части стандарта IEEE 802.15.4 выполняется в двух исполнениях: устройства с ограниченным набором функции (Reduced Function Device, RFD) и полностью функциональные устройства (Full Function Device, FFD). При реализации одной из топологий сети, приведенной на рисунке 4.17, требуется наличие, по крайней мере, одного FFD-устройства, выполняющего роль сетевого координатора [3].
Рисунок 4.17
В таблице 4.8 приведен перечень функций, выполняемых устройствами FFD и RFD.
Таблица 4.8 – Функции FFD и RFD устройств
RFD-устройства | FFD-устройства |
При объединении RFD-устройств может использоваться только топология «звезда» | При объединении FFD-устройств могут создаваться сети следующих топологий: «звезда», «peer-to-peer» и «кластерное дерево» |
В роли сетевого координатора выступать не могут | Могут выполнять функции сетевого координатора, обеспечивающего маршрутизацию передаваемых данных в сети |
Обмен данными только сетевым координатором (FFD-устройством) | Обмен данными с сетевым координатором, другим FFD-устройством и RFD-устройством |
Питание от встроенной батареи | Питание FFD-устройств осуществляется от внешнего источника питания |
Низкая стоимость аппаратной части RFD-устройств обеспечивается за счет ограничения набора функций при организации взаимодействия с сетевым координатором или FFD-устройством. Это в свою очередь, отражается на неполной реализации модели взаимодействия, приведенной на рисунке 4.17, а также предъявляет минимальные требования к ресурсам памяти.
Кроме деления устройств на RFD и FFD, альянсом ZigBee определены три типа логических устройств: ZigBee-координатор (согласующее устройство), ZigBee-маршрутизатор и оконечное устройство ZigBee. Координатор осуществляет инициализацию сети, управление узлами, а также хранит информацию о настройках каждого узла, подсоединенного к сети. ZigBee-маршрутизатор отвечает за маршрутизацию сообщений, передаваемых по сети от одного узла к другому. Под оконечным устройством понимают любое оконечное устройство, подсоединенное к сети. Рассмотренные выше устройства RFD и FFD как раз и являются оконечными устройствами. Тип логического устройства при построении сети определяет конечный пользователь посредством выбора определенного профиля, предложенного альянсом ZigBee. При построении сети с топологией «каждый с каждым» передача сообщений от одного узла сети к другому может осуществляться по разным маршрутам, что позволяет строить распределенные сети (объединяющие несколько небольших сетей в одну большую — кластерное дерево) с установкой одного узла от другого на достаточно большом расстоянии и обеспечить надежную доставку сообщений.
Процесс формирования сети выглядит следующим образом. Даже если все устройства ZigBee включены и могут вести общение друг с другом, сеть не возникнет, пока не появиться устройство, взявшее на себя роль координатора. Сначала координатор определяет уровни энергии на всех доступных частотных каналах. Выбирается канал с наименьшим уровнем. Выбрав канал, координатор определяет наличие в нем других работающих ZigBee сетей и их идентификаторы через общение с узлами этих сетей. Затем координатор случайным образом выбирает идентификатор для своей сети из диапазона 0x0000‑0x3FFE так, чтобы он не совпал с идентификаторами других сетей в том же частотном диапазоне.
Сетевой 16-и битный адрес координатора всегда равен 0x0000. Теперь координатор разрешает присоединяться к своей сети другим устройствам, которые до этого момента сканировали запросами эфир на предмет доступных сетей. Присоединение начинается по принципу дерева, т.е. присоединив некоторое количество первых конечных устройств и маршрутизаторов, координатор отказывается присоединять непосредственно к себе остальных, оставшиеся вынуждены искать уже присоединившиеся к координатору маршрутизаторы (конечные устройства не могут присоединять другие устройства) и присоединяться к ним. Таким образом, начинает ветвиться дерево присоединений. Из кандидатов в родительские узлы предпочтение отдается тем, от кого меньше всего остается переходов к координатору.
В случае звездообразной топологии, коммуникации устанавливаются между отдельными устройствами и центральным контроллером, называемым координатором PAN.
Топология peer-to-peer (P2P) также работает с координатором PAN. Она отличается от звезды тем, что любые сетевые устройства могут обмениваться друг с другом, если существуют соответствующие каналы [1].
Топология Р2Р позволяет формировать более сложные сетевые конфигурации. Выделяют древовидные (кластерное дерево, claster tree) и ячеистые (смешанная: mesh) структуры. Сеть Р2Р может быть самоорганизующейся и самовосстанавливающейся. Эта топология позволяет организовать и многошаговые маршруты доставки сообщений от одного сетевого устройства другому. Такие функции могут быть добавлены на более высоком уровне и не являются частью стандарта.
- 4 Конспекты лекций к дисциплине «Беспроводные технологии передачи измерительной информации»
- Глоссарий
- Общие принципы построения сетей
- Методы передачи дискретных данных на физическом уровне
- Линии связи
- Аппаратура линий связи
- Характеристики линий связи
- Типы кабелей
- Кабели типа Витая пара (twisted pair, tp)
- Волоконно–оптический кабель
- Методы передачи дискретных данных на физическом уровне
- Аналоговая модуляция
- Методы аналоговой модуляции
- Цифровое физическое кодирование
- Логическое кодирование
- Скрэмблирование
- Методы передачи данных канального уровня
- Асинхронные протоколы
- Синхронные символьно-ориентированные и бит-ориентированные протоколы
- Бит–ориентированные протоколы
- Протоколы с гибким форматом кадра
- Передача с установлением соединения и без установления соединения
- Обнаружение и коррекция ошибок
- Методы обнаружения ошибок
- Методы восстановления искаженных и потерянных кадров
- Компрессия данных
- Методы коммутации
- Коммутация каналов
- Коммутация каналов на основе частотного мультиплексирования
- Коммутация каналов на основе разделения времени
- Общие свойства сетей с коммутацией каналов
- Коммутация пакетов
- Виртуальные каналы в сетях с коммутацией пакетов
- Пропускная способность сетей с коммутацией пакетов
- Коммутация сообщений
- Беспроводные сети wifi
- Основные элементы сети wifi
- Основы передачи данных в беспроводных сетях
- Сигналы для передачи информации
- Передача данных
- Модуляция сигналов
- Пропускная способность канала
- Методы доступа к среде в беспроводных сетях
- Технология расширения спектра
- Кодирование и защита от ошибок
- Методы коррекции ошибок
- Методы автоматического запроса повторной передачи
- Архитектура стандарта 802.11
- Стек протоколов ieee 802.11
- Уровень доступа к среде стандарта 802.11
- Распределенный режим доступа dcf
- Централизованный режим доступа pcf
- Кадр mac-подуровня
- Реализация стандартов ieee 802.11
- Ieee 802.11
- Передача в диапазоне инфракрасных волн
- Беспроводные локальные сети со скачкообразной перестройкой частоты (fhss)
- Беспроводные локальные сети, использующие широкополосную модуляцию dsss с расширением спектра методом прямой последовательности
- Ieee 802.11b
- Ieee 802.11a
- Ieee 802.11g
- Ieee 802.11d
- Ieee 802.11e
- Ieee 802.11f
- Ieee 802.11h
- Ieee 802.11i
- Ieee 802.11n
- Режимы и особенности их организации
- Режим Ad Hoc
- Инфраструктурный режим
- Режимы wds и wds With ap
- Режим повторителя
- Режим клиента
- Организация и планирование беспроводных сетей
- Угрозы и риски безопасности беспроводных сетей
- Основы криптографии
- Базовые термины и их определения
- Криптография
- Протоколы безопаснисти беспроводных сетей
- Механизм шифрования wep
- Потоковое шифрование
- Блочное шифрование
- Вектор инициализации (Initialization Vector, IV)
- Обратная связь
- Уязвимость шифроваия wep
- Пассивные сетевые атаки
- Активные сетевые атаки
- Аутенфикация в беспроводных сетях
- Стандарт ieee 802.11 сети с традиционной безопасностью
- Принцип аутентификации абонента в ieee 802.11
- Открытая аутентификация
- Аутентификация с общим ключом
- Аутентификация по mac-адресу
- Уязвимость механизмов аутентификации 802.11
- Проблемы идентификатора беспроводной лвс
- Уязвимость открытой аутентификации
- Уязвимость аутентификации с общим ключом
- Уязвимость аутентификации по mac-адресу
- Спецификация wpa
- Пофреймовое изменение ключей шифрования
- Контроль целостности сообщения
- Стандарт сети 802.11i с повышенной безопасностью (wpa2)
- Стандарт 802.1x/eap (enterprise-Режим)
- Архитектура ieee 802.1x
- Механизм аутентификации
- Технологии целостности и конфиденциальности передаваемых данных
- Развертывание беспроводных виртуальных сетей
- Топология сеть-сеть
- Топология хост-сеть
- Топология хост-хост
- Распространенные туннельные протоколы
- Протокол ipSec
- Протокол рртр
- Протокол l2tp
- Системы обнаружения вторжения в беспроводные сети
- Общая характеристика Personal Area Network
- Стандарт технологии bluetooth (ieee 802.15.1)
- Общие сведения
- Архитектура bluetooth Метод частотных скачков
- Понятие пикосети
- Адрес Bluetooth-устройства (bd_addr)
- Состояния Bluetooth
- Физические каналы
- Процедура опроса
- Типы трафика
- Транспортная архитектура
- Режимы работы Bluetooth
- Форматы пакетов bluetooth
- Типы пакетов
- Стек протоколов bluetooth
- Модели использования
- Профили Bluetooth
- Методы безопасности
- Уровни надежности устройства.
- Перспективы развития технологии: bluetooth 4.0.
- Беспроводная сенсорная сеть zigbee®
- Общие сведения
- Топология беспроводных персональных сетей
- Адресация в персональных сетях ZigBee
- Современные реализации сетей на основе технологии ZigBee Ведущие производители оборудования ZigBee
- Пример реализации сенсорной сети
- Библиографическое описание