2.4. Характеристики комбинационных схем
Сложность схемы оценивается количеством оборудования, составляющего схему. При разработке схемы на основе конкретной элементной базы, где количество оборудования обычно измеряется количеством корпусов (модулей) интегральных микросхем, используемых в схеме. В теоретических разработках ориентируются на произвольную элементную базу и поэтому для оценки затрат оборудования используется оценка сложности схем по Квайну [4].
Сложность (цена) по Квайну определяется суммарным числом входов логических элементов в составе схемы. При такой оценке единица сложности – один вход логического элемента. Цена инверсного входа обычно принимается равной двум. Такой подход к оценке сложности оправдан по следующим причинам:
- сложность схемы легко вычисляется по булевым функциям, на основе которых строится схема: для ДНФ сложность схемы равна сумме количества букв, (букве со знаком отрицания соответствует цена 2) и количества знаков дизъюнкции, увеличенного на 1 для каждого дизъюнктивного выражения.
- все классические методы минимизации булевых функций обеспечивают минимальность схемы именно в смысле цены по Квайну.
Практика показывает, что схема с минимальной ценой по Квайну обычно реализуется наименьшим числом конструктивных элементов – корпусов интегральных микросхем.
Быстродействие комбинационной схемы оценивается максимальной задержкой сигнала при прохождении его от входа схемы к выходу, т.е. определяется промежутком времени от момента поступления входных сигналов до момента установления соответствующих значений выходных. Задержка сигнала кратна числу элементов, через которые проходит сигнал от входа к выходу схемы. Поэтому быстродействие схемы характеризуется значением задержки сигнала на одном элементе . Как известно, любая булева функция может быть представлена в ДНФ, которой соответствует двухуровневая комбинационная схема. Следовательно, быстродействие любой КС в принципе можно довести до 2.
Минимизация булевой функции с целью уменьшения сложности схем обычно приводит к необходимости представления функций в скобочной форме.
- Глава 1. Упрощение и минимизация логических функций
- 1.1. Задача минимизации булевых функций
- 1.2. Метод минимизирующих карт.
- 1.3. Метод Квайна и импликантные матрицы
- 1.4. Минимизация функций алгебры логики по методу Квайна - Мак-Класки
- 1.5. Минимизация конъюнктивных нормальных форм
- 1.6. Минимизация неполностью определенных булевых функций
- 1.7. Метод неопределенных коэффициентов
- Глава 2. Методы анализа и синтеза логических электронных схем
- 2.1. Логические операторы электронных схем или цепей
- 2.2. Канонический метод синтеза комбинационных схем.
- 2.3. Минимизация логических схем со многими выходами
- 2.4. Характеристики комбинационных схем
- 2.4. Задачи анализа электронных схем
- 2.5. Анализ комбинационных схем методом синхронного моделирования.
- 2.6. Анализ кс методом асинхронного моделирования
- Глава 3. Основы теории конечных автоматов
- 3.1. Определение абстрактного цифрового автомата
- 3.2. Табличное задание автоматов Мили и Мура
- 3.3. Графический способ задания автомата
- 3.4. Матричный способ задания автомата
- 3.5. Эквивалентность автоматов
- 3.6. Минимизация числа внутренних состояний полностью определенных автоматов
- Глава 4. Структурный цыфровой автомат
- 4.2.Элементарные цифровые автоматы – элементы памяти
- 4.3. Пример канонического метода структурного синтеза автомата
- 4.5. Управляющие и операторные автоматы
- 4.6. Способы описания алгоритмов и микропрограмм
- 4.8. Синтез автомата Мили
- 4.9. Структурный синтез автомата Мили
- Литература
- 1. Савельев а.Я. Прикладная теория цифровых автоматов. -м.: Высшая школа, 1987.
- Оглавление