Основы транкинговых систем радиосвязи
Транкинговые системы радиосвязи (TCP) являются развитием низовой полудуплексной радиосвязи и по рядК признаков могут быть соотнесены с сотовыми системами связи. В отличие от обычных систем с постоянно закрепленными частотными каналами в TCP применяется динамическое распределение каналов. Напомним, что термин «транкинг», принятый в сфере профессиональной радиосвязи, означает метод свободного доступа большого числа абонентов к ограниченному числу каналов. Поскольку в какой-либо момент времени не все абоненты активны, то необходимое число каналов значительно меньше общего числа абонентов. Примерная зависимость числа абонентов TCP от числа радиоканалов приведена в табл.3.
Таблица 3
Число радиоканалов | 6 | 11 | 21 | 25 |
Общее число абонентов | 320 | 790 | 1760 | 2160 |
В отличие от обычных систем радиосвязи TCP характеризуются следующими признаками: экономное использование выделенного диапазона частот; наличие одной или нескольких базовых радиостанций и системы управления; возможность выхода в другие сети, в частности в телефонную сеть общего пользования; увеличение зоны обслуживания путем создания многозоновой сети; передача данных и телеметрической информации; множество сервисных возможностей.
Перечисленные выше признаки характерны и для сотовых систем связи. Однако в отличие от последних ТРС в первую очередь ориентированы на задачи, связанные с оперативным управлением.
В сравнении с сотовыми системами к преимуществам TCP, позволяющим отдать им предпочтение при организации оперативной связи, следует отнести: гибкую систему вызовов - индивидуальный, групповой, вещательный, приоритетный, аварийный и др.; гибкую систему нумерации - от коротких двух- или трехзначных до полных городских номеров; малое время установления соединения - менее секунды против нескольких секунд в сотовых системах; возможность работы в группе; наличие (в ряде систем) режима непосредственной связи между двумя абонентскими радиостанциями без участия базовой; экономичность - по стоимости оборудования и по эксплуатационным расходам TCP в несколько раз экономичнее сотовых систем.
Архитектура транкинговых сетей. Рассмотрим основные элементы архитектуры TCP на примере типовой однозоновой ТРС с частотным разделением каналов, рис. 11. Назначение элементов схемы очевидно. Рассмотрим структуру основных составляющих схемы.
Рис. 11. Схема однозоновой транкинговой радиосети
Базовая радиостанция, рис. 12, содержит модули приемопередатчиков (ретрансляторов), каждый из которых настроен на одну пару частот - приема и передачи. Таким образом, в отличие от обычной связи между двумя радиостанциями, где в полудуплексном режиме достаточно одной частоты, в транкинговой системе требуются две частоты (от одной мобильной радиостанции передача ведется на частоте f1, на базовую станцию, а от базовой станции на другую мобильную станцию на частоте f2), а для работы в дуплексном режиме - четыре (передача от мобильной станции одного направления ведется на частоте f1 на базовую станцию и на частоте f2 от базовой станции на мобильную станцию, а в обратном направлении соответственно на частотах f3 и f4. Каждый из приемопередатчиков имеет четырехпроводное низкочастотное (звуковое) окончание для сопряжения с коммутатором. Радиочастотные входы/выходы приемопередатчиков нагружены на устройство объединения/разделения каналов.
Рис. 12. Структурная схема базовой радиостанции
Коммутатор осуществляет соединение подвижных абонентов, а также выполняет функции сопряжения сТфОП.
Контроллер (устройство управления). Обеспечивает взаимодействие всех узлов базовой станции. Осуществляет обработку вызовов и управляет процессом установления соединений. Часто контроллер и коммутатор объединяются в одном модуле.
Интерфейс с ТфОП предназначен для сопряжения с телефонной сетью общего пользования. Обеспечивает электронный стык с окончаниями АТС и согласование протоколов сигнализацией.
Многозоновая ТРС. Многозоновая транкинговая сеть создается с целью увеличения зоны обслуживания. При этом территория обслуживания разбивается на зоны, как правило, шестиугольной формы (соты). На рис. 13 изображена структура трехзоновой сети. Управление сетью осуществляет центральный узел, содержащий центральный коммутатор-контроллер, терминал технического обслуживания и управления, а также интерфейс с ТфОП. Коммутаторы различных зон связаны между собой каналами управления трафика. Для этой цели применяются как физические (выделенные) линии, так и стандартные аналоговые или цифровые системы передачи.
Необязательно, чтобы каждая зона имела свой собственный коммутатор. Для зон с малым числом абонентов функции коммутации могут быть возложены на центральный коммутатор, для чего между ним и базовой радиостанцией организуется необходимое число каналов. В этом случае оборудование строится по модульному принципу. Могут отдельно существовать приемопередающее оборудование, обычно называемое базовой станцией, и коммутатор, в состав которого входит основной контроллер, наделенный функциями управления всей системой.
Рис. 13. Структура многозоновой транкинговой сети
Непрерывно по специально выделенным каналам осуществляется обмен сигналами между контроллерами других зон. Вся информация о вызовах поступает в главный контроллер, который управляет процессом соединения. Чем удаленней друг от друга абоненты и чем в более разнородных сетях они расположены, тем сложнее функции управления сетью и тем больше обмен управляющими сигналами, необходимыми для установления соединения, его поддержки и его освобождения.
В многозоновых ТРС возникает необходимость отслеживания местоположения радиоабонентов при перемещении из зоны в зону. Процедура отслеживания местоположения абонентов называется роумингом. Специфическая особенность ТРС состоит в необходимости поддержания группового роуминга для обеспечения возможности работы в группе.
В многозоновых ТРС возникает необходимость частотного планирования для исключения взаимных помех между радиостанциями соседних зон.
Многоуровневая транкинговая сеть. С целью более гибкого управления трафиком и экономии ресурсов системы могут быть реализованы не просто многозоновые, но также и многоуровневые TCP. Последнее означает, что управление частью трафика возлагается на контроллеров и коммутаторы подчиненного уровня. Это разгружает ресурсы центрального коммутатора, уменьшает общее число и протяженность речевых каналов, связывающих коммутаторы.
- Основы построения телекоммуникационных систем и сетей
- Предисловие
- Введение
- Лекция 1
- Основные понятия и определения
- Основные понятия и определения. Классификация систем электросвязи
- Вопросы и задачи для самоконтроля
- Лекция 2 Первичные сигналы электросвязи Первичные сигналы электросвязи и их физические характеристики
- Сигналы передачи данных и телеграфии
- Вопросы и задачи для самоконтроля
- Лекция 3 Каналы передачи Каналы передачи, их классификация и основные характеристики
- Типовые каналы передачи
- Вопросы и задачи для самоконтроля
- Лекция 4 Двусторонние каналы Построение двусторонних каналов
- Развязывающие устройства, требования к ним и классификация
- Анализ резисторной дифференциальной системы
- Лекция 5 Трансформаторная дифференциальная система Анализ трансформаторной дифференциальной системы
- Определение условия непропускания тдс от полюсов 4-4 к полюсам 2-2
- Определение входных сопротивлений тдс
- Определение затуханий уравновешенной тдс в направлениях передачи
- Анализ неуравновешенной трансформаторной дифференциальной системы
- Сравнение трансформаторной и резисторной дифференциальных систем
- Лекция 6 Двусторонний канал как замкнутая система Устойчивость двусторонних каналов
- Устойчивость телефонного канала
- Искажения от обратной связи
- Вопросы и задачи для самоконтроля к лекциям 4-6
- Лекция 7 Общие принципы построения многоканальных систем передачи
- Обобщенная структурная схема многоканальной системы передачи
- Методы разделения канальных сигналов
- Взаимные помехи между каналами
- Вопросы и задачи для самоконтроля
- Лекция 8 Принципы формирования канальных сигналов в системе передачи с частотным разделением каналов
- Формирование канальных сигналов
- Способы передачи амплитудно-модулированных сигналов
- Квадратурные искажения при передаче амплитудно-модулированных сигналов
- Лекция 9 Методы формирования одной боковой полосы. Искажения в каналах и трактах сп с чрк
- Фильтровой метод формирования обп
- Многократное преобразование частоты
- Фазоразностный метод формирования обп
- Искажения в каналах и трактах систем передачи с частотным разделением каналов
- Вопросы, задачи и упражнения для самоконтроля к лекциям 8и9
- Лекция 10 Принципы построения и особенности работы систем передачи с временным разделением каналов Структурная схема системы передачи с временным разделением каналов
- Формирование канальных сигналов в системах передачи с временным разделением каналов
- Формирование канальных сигналов с помощью амплитудно-импульсной модуляции.
- Формирование канальных сигналов с помощью широтно-импульсной модуляции.
- Формирование канальных сигналов на основе фазоимпульсной модуляции.
- Выбор вида импульсной модуляции для построения систем передачи с временным разделением каналов
- Помехоустойчивость амплитудно-импульсной модуляции.
- Выбор вида импульсной модуляции для построения систем передачи с временным разделением каналов
- Помехоустойчивость амплитудно-импульсной модуляции.
- Переходные влияния между каналами систем передачи с временным разделением каналов
- Оценка переходных помех 1-го рода.
- Оценка переходных помех 2-го рода.
- Обобщенная структурная схема системы передачи с временным разделением каналов на основе фазоимпульсной модуляции
- Вопросы, задачи и упражнения для самоконтроля
- Лекция 11 Общие принципы формирования и передачи сигналов в цифровых системах передачи Постановка задачи
- Квантование сигналов по уровню
- Оценка шумов квантования Оценка шумов при равномерном квантовании.
- Гармонический сигнал.
- Речевой сигнал.
- Речевой сигнал, поступающий от разных источников.
- Многоканальный групповой телефонный сигнал.
- Телевизионный сигнал.
- Оценка шумов квантования при неравномерном квантовании.
- Кодирование квантованных сигналов
- Обобщенная структурная схема цифровой системы передачи
- Виды синхронизации в цифровых системах передачи
- Принципы регенерации цифровых сигналов
- Линейное кодирование в цсп
- Лекция 12
- Разностные методы кодирования.
- Иерархия цифровых систем передачи
- Дифференциальная импульсно-кодовая модуляция
- Дифференциальная импульсно-кодовая модуляция как система с линейным предсказанием.
- Дельта-модуляция
- Иерархия цифровых систем передачи на основе импульсно-кодовой модуляции
- Объединение цифровых потоков в плезиохронной цифровой иерархии
- Объединение цифровых потоков в синхронной цифровой иерархии
- Вопросы и задачи для самоконтроля к лекциям 11 и 12
- Лекция 13 Общие принципы построения волоконно-оптических систем передачи Краткий исторический очерк
- Обобщенная структурная схема волоконно-оптической системы передачи
- Классификация волоконно-оптических систем передачи. Способы организации двусторонней связи на основе волоконно-оптических систем передачи. Способы уплотнения оптических кабелей
- Лекция 14 Основные узлы оптических систем передачи. Оптический линейный тракт Оптические передатчики
- Требования к источникам оптического излучения: их параметры и характеристики
- Оптические приемники
- Лавинные фотодиоды (лфд).
- Шумы приемников оптического излучения.
- Модуляторы оптической несущей
- Виды модуляции оптической несущей.
- Обобщенная структурная схема оптического линейного тракта
- Оптические усилители
- 1. Усилители Фабри - Перо.
- 2. Усилители на волокне, использующие бриллюэновское расстояние.
- 3. Усилители на волокне, использующие рамановское расстояние,
- 4. Полупроводниковые лазерные усилители (пплу)
- 5. Усилители на примесном волокне
- Вопросы и задачи для самоконтроля к лекциям 13 и 14
- Лекция 15 Общие принципы и особенности построения систем радиосвязи Основные понятия и определения. Классификация диапазонов радиочастот и радиоволн. Структура радиосистем передачи.
- Общие принципы организации радиосвязи. Классификация радиосистем передачи
- Особенности распространения радиоволн метрового -миллиметрового диапазонов
- Антенно-фидерные устройства
- Лекция 16 Построение радиорелейных и спутниковых линий передачи Основные понятия и определения. Классификация радиорелейных линий передачи. Принципы многоствольной передачи
- Виды модуляции, применяемые в радиорелейных и спутниковых системах передачи
- Вопросы для самоконтроля
- Лекция 17 Особенности построения оборудования радиорелейных и спутниковых систем передачи Принципы построения оборудования радиорелейных линий передачи прямой видимости
- Особенности построения тропосферных радиорелейных линий
- Передача сигналов телевизионного вещания по радиорелейным линиям
- Спутниковые системы передачи
- Много станционный доступ с разделением сигналов по форме.
- Принципы построения систем спутникового телевещания - ств
- Вопросы для самоконтроля
- Лекция 18 Общие принципы построения телекоммуникационных сетей Основные понятия и определения
- Назначение и состав сетей электросвязи
- Методы коммутации в сетях электросвязи
- Структура сетей электросвязи
- Принципы построения взаимоувязанной сети связи Российской Федерации
- Многоуровневый подход. Протоколы, интерфейс, стек протоколов
- Элементы теории телетрафика
- Вопросы для самоконтроля
- Лекция 19 Особенности построения вторичных телекоммуникационных сетей Состав и назначение сетей телефонной связи
- Структура вторичных цифровых сетей общего пользования.
- Состав и назначение телеграфных сетей
- Сети передачи данных
- Информационно-вычислительные сети. Сети эвм
- Телематические службы
- Цифровые сети интегрального обслуживания
- Вопросы для самоконтроля
- Лекция 20 Принципы построения сетей и систем радиосвязи Основные понятия и определения
- Основы построения систем сотовой связи
- Основы транкинговых систем радиосвязи
- Основы построения систем беспроводного абонентского радиодоступа
- Технико-экономические аспекты системы беспроводного абонентского радиодоступа
- Вопросы для самоконтроля,
- Основы построения телекоммуникационных систем и сетей