Обыкновенные линейные системы автоматического управления Понятие обыкновенной линейной системы
Система автоматического управления называется обыкновенной линейной, если процесс в системе можно описать обыкновенным линейным дифференциальным уравнением порядка "n". Это уравнение записывается в следующем виде:
где у(t)– выходная (управляемая) величина,х(t)– входное воздействие,ci, bj– постоянные коэффициенты уравнения,n > m.
Реальные САУ и их элементы обычно имеют нелинейные статические характеристики и описываются нелинейными дифференциальными уравнениями. Однако на практике в ряде случаев нелинейностью можно пренебречь и описать САУ или ее элемент линеаризованным (приведённым к линейному виду) дифференциальным уравнением.
Таким образом, обыкновенная линейная система является упрощенной математической моделью для описания реальных систем автоматического управления. Процессы в обыкновенной линейной системе описываются обыкновенными линейными дифференциальными уравнениями любого порядка "n". Все сигналы в такой системе непрерывны и связаны между собой линейными функциональными зависимостями.
Обыкновенное линейное дифференциальное уравнение порядка "n" в теории автоматического управления принято записывать в операторном виде
,
где оператор дифференцирования.
Решение дифференциального уравнения y(t)дает описание процесса в системе, возникающего при воздействии на ее вход сигналаx(t).Решение дифференциального уравнения складывается из общего решения и частного решения:
,
где общее решение дифференциального уравнения без правой части, описывающее свободный процесс в системе независимо от вида входного воздействия;частное решение дифференциального уравнения, зависящее от его правой части и описывающее вынужденный процесс в системе.
Для нахождения общего решения нужно решить уравнение без правой части
.
Общее решение обыкновенного линейного дифференциального уравнения порядка "n" имеет вид
,
где Ai – постоянные интегрирования, определяемые из начальных условий ;pi – корни характеристического уравнения
.
В статическом состоянии системы все сигналы в ней постоянны и, следовательно, все производные этих сигналов равны нулю. Тогда
и дифференциальное уравнение системы вырождается в статическую характеристику
или ,
где K – коэффициент усиления системы.
Теория обыкновенных линейных систем автоматического управления была разработана в первую очередь и является базой для теории автоматического управления.
- А.В. Федотов теория автоматического управления
- Список сокращений
- Основы теории автоматического управления Введение
- Примеры систем автоматического управления Классический регулятор Уатта для паровой машины
- Система регулирования скорости вращения двигателей
- Автоматизированный электропривод
- Система терморегулирования
- Следящая система автоматического управления
- Система автоматического регулирования уровня
- Обобщённая структура автоматической системы
- Принципы автоматического управления
- Математическая модель автоматической системы
- Пространство состояний системы автоматического управления
- Классификация систем автоматического управления
- Структурный метод описания сау
- Обыкновенные линейные системы автоматического управления Понятие обыкновенной линейной системы
- Линеаризация дифференциального уравнения системы
- Форма записи линеаризованных дифференциальных уравнений
- Преобразование Лапласа
- Свойства преобразования Лапласа
- Пример исследования функционального элемента
- Передаточная функция
- Типовые воздействия
- Временные характеристики системы автоматического управления
- Частотная передаточная функция системы автоматического управления
- Частотные характеристики системы автоматического управления
- Типовые звенья
- 5. Дифференцирующее звено.
- Неустойчивые звенья
- Соединения структурных звеньев
- Преобразования структурных схем
- Передаточная функция замкнутой системы автоматического управления
- Передаточная функция замкнутой системы по ошибке
- Построение частотных характеристик системы
- Устойчивость систем автоматического управления Понятие устойчивости
- Условия устойчивости системы автоматического управления
- Теоремы Ляпунова об устойчивости линейной системы
- Критерии устойчивости системы Общие сведения
- Критерий устойчивости Гурвица
- Критерий устойчивости Найквиста
- Применение критерия к логарифмическим характеристикам
- Критерий устойчивости Михайлова
- Построение области устойчивости системы методом d-разбиения
- Структурная устойчивость систем
- Качество системы автоматического управления Показатели качества
- Точность системы автоматического управления Статическая ошибка системы
- Вынужденная ошибка системы
- Прямые методы анализа качества системы Аналитическое решение дифференциального уравнения
- Решение уравнения системы операционными методами
- Численное решение дифференциального уравнения
- Моделирование переходной характеристики
- Косвенные методы анализа качества Оценка качества по распределению корней характеристического полинома системы
- Интегральные оценки качества процесса
- Оценка качества по частотным характеристикам Основы метода
- Оценка качества системы по частотной характеристике
- Оценка колебательности системы
- Построение вещественной частотной характеристики
- Оценка качества сау по логарифмическим характеристикам
- Синтез системы автоматического управления Постановка задачи синтеза системы
- Параметрический синтез системы
- Структурный синтез системы Способы коррекции системы
- Построение желаемой логарифмической характеристики системы
- Синтез последовательного корректирующего звена
- Синтез параллельного корректирующего звена
- Другие методы синтеза систем автоматического управления
- Реализация систем автоматического управления Промышленные регуляторы
- Особенности реализации промышленных регуляторов
- Настройка промышленных регуляторов
- Управление по возмущению
- Комбинированное управление
- Многосвязные системы регулирования
- Обеспечение автономности управления
- Библиографический список
- Предметный указатель