Угрозы и риски безопасности беспроводных сетей
Главное отличие между проводными и беспроводными сетями связано с абсолютно неконтролируемой областью между конечными точками сети. В достаточно широком пространстве сетей беспроводная среда никак не контролируется. Современные беспроводные технологии предлагают ограниченный набор средств управления всей областью развертывания сети. Это позволяет атакующим, находящимся в непосредственной близости от беспроводных структур, производить целый ряд нападений, которые были невозможны в проводном мире. Обсудим характерные только для беспроводного окружения угрозы безопасности, оборудование, которое используется при атаках, проблемы, возникающие при роуминге от одной точки доступа к другой, укрытия для беспроводных каналов и криптографическую защиту открытых коммуникаций.
Подслушивание
Наиболее распространенная проблема в таких открытых и неуправляемых средах, как беспроводные сети, – возможность анонимных атак. Анонимные вредители могут перехватывать радиосигнал и расшифровывать передаваемые данные, как показано на рисунке 3.8.1.
Рисунок. 3.8.1 – Атака «подслушивание»
Оборудование, используемое для подслушивания в сети, может быть не сложнее того, которое используется для обычного доступа к этой сети. Чтобы перехватить передачу, злоумышленник должен находиться вблизи от передатчика. Перехваты такого типа практически невозможно зарегистрировать, и еще труднее им помешать. Использование антенн и усилителей дает злоумышленнику возможность находиться на значительном удалении от цели в процессе перехвата.
Подслушивание ведут для сбора информации в сети, которую впоследствии предполагается атаковать. Первичная цель злоумышленника – понять, кто использует сеть, какая информация в ней доступна, каковы возможности сетевого оборудования, в какие моменты его эксплуатируют наиболее и наименее интенсивно и какова территория развертывания сети. Все это пригодится для того, чтобы организовать атаку на сеть. Многие общедоступные сетевые протоколы передают такую важную информацию, как имя пользователя и пароль, открытым текстом. Перехватчик может использовать добытые данные для того, чтобы получить доступ к сетевым ресурсам. Даже если передаваемая информация зашифрована, в руках злоумышленника оказывается текст, который можно запомнить, а потом уже раскодировать.
Другой способ подслушивания – подключиться к беспроводной сети. Активное подслушивание в локальной беспроводной сети обычно основано на неправильном использовании протокола Address Resolution Protocol (ARP). Изначально эта технология была создана для «прослушивания» сети. В действительности мы имеем дело с атакой типа MITM (man in the middle, «человек посередине») на уровне связи данных. Они могут принимать различные формы и используются для разрушения конфиденциальности и целостности сеанса связи. Атаки MITM более сложны, чем большинство других атак: для их проведения требуется подробная информация о сети. Злоумышленник обычно подменяет идентификацию одного из сетевых ресурсов. Когда жертва атаки инициирует соединение, мошенник перехватывает его и затем завершает соединение с требуемым ресурсом, а потом пропускает все соединения с этим ресурсом через свою станцию. При этом, атакующий может посылать информацию, изменять посланную или подслушивать все переговоры и потом расшифровывать их.
Атакующий посылает ARP-ответы, на которые не было запроса, к целевой станции локальной сети, которая отправляет ему весь проходящий через нее трафик. Затем злоумышленник будет отсылать пакеты указанным адресатам.
Таким образом, беспроводная станция может перехватывать трафик другого беспроводного клиента (или проводного клиента в локальной сети).
Отказ в обслуживании (Denial of Service, DOS)
Полную парализацию сети может вызвать атака типа DOS. Во всей сети, включая базовые станции и клиентские терминалы, возникает такая сильная интерференция, что станции не могут связываться друг с другом (рисунок 3.8.2). Эта атака выключает все коммуникации в определенном районе. Если она проводится в достаточно широкой области, то может потребовать значительных мощностей. Атаку DOS на беспроводные сети трудно предотвратить или остановить. Большинство беспроводных сетевых технологий использует нелицензированные частоты – следовательно, допустима интерференция от целого ряда электронных устройств.
Рисунок 3.8.2 – Атака «отказ в обслуживании» в беспроводных коммуникациях
Глушение клиентской станции
Глушение в сетях происходит тогда, когда преднамеренная или непреднамеренная интерференция превышает возможности отправителя или получателя в канале связи, таким образом, выводя этот канал из строя. Атакующий может использовать различные способы глушения.
Глушение клиентской станции дает возможность мошеннику подставить себя на место заглушенного клиента, как показано на рисунке 3.8.3. Также глушение могут использовать для отказа в обслуживании клиента, чтобы ему не удавалось реализовать соединение. Более изощренные атаки прерывают соединение с базовой станцией, чтобы затем она была присоединена к станции злоумышленника.
Рисунок 3.8.3 – Атака глушения клиента для перехвата соединения
Глушение базовой станции
Глушение базовой станции предоставляет возможность подменить ее атакующей станцией, как показано на рисунке 3.8.4. Такое глушение лишает пользователей доступа к услугам.
Рисунок 3.8.4 – Атака глушения базовой станции для перехвата соединения
Как отмечалось выше, большинство беспроводных сетевых технологий использует нелицензированные частоты. Поэтому многие устройства, такие как радиотелефоны, системы слежения и микроволновые печи, могут влиять на работу беспроводных сетей и глушить беспроводное соединение. Чтобы предотвратить такие случаи непреднамеренного глушения, прежде чем покупать дорогостоящее беспроводное оборудование, надо тщательно проанализировать место его установки. Такой анализ поможет убедиться в том, что другие устройства никак не помешают коммуникациям.
Угрозы криптозащиты
В беспроводных сетях применяются криптографические средства для обеспечения целостности и конфиденциальности информации. Однако оплошности приводят к нарушению коммуникаций и злонамеренному использованию информации.
WEP – это криптографический механизм, созданный для обеспечения безопасности сетей стандарта 802.11. Этот механизм разработан с единственным статическим ключом, который применяется всеми пользователями. Управляющий доступ к ключам, частое их изменение и обнаружение нарушений практически невозможны.
Исследование WEP-шифрования выявило уязвимые места, из-за которых атакующий может полностью восстановить ключ после захвата минимального сетевого трафика. В Интернет есть средства, которые позволяют злоумышленнику восстановить ключ в течение нескольких часов. Поэтому на WEP нельзя полагаться как на средство аутентификации и конфиденциальности в беспроводной сети.
Использовать описанные криптографические механизмы лучше, чем не использовать их вовсе, но благодаря известной уязвимости нужны другие методы защиты от перечисленных выше атак. Все беспроводные коммуникационные сети подвержены атакам прослушивания в период контакта (установки соединения, сессии связи и прекращения соединения). Сама природа беспроводного соединения устраняет возможность его контроля, и потому оно требует защиты. Управление ключом, как правило, вызывает дополнительные проблемы, когда применяется при роуминге и в случае общего пользования открытой средой. Далее в этом мы более внимательно рассмотрим проблемы криптографии и их решения.
Анонимность атак
Беспроводной доступ обеспечивает полную анонимность атаки. Без соответствующего оборудования в сети, позволяющего определять местоположение, атакующий может легко сохранять анонимность и прятаться где угодно на территории действия беспроводной сети. В таком случае злоумышленника трудно поймать и еще сложнее передать дело в суд.
В недалеком будущем прогнозируется ухудшение распознаваемости атак в Интернет из-за широкого распространения анонимных входов через небезопасные точки доступа. Уже есть много сайтов, где публикуются списки таких точек, которые можно использовать с целью вторжения. Важно отметить, что многие мошенники изучают сети не для атак на их внутренние ресурсы, а для получения бесплатного анонимного доступа в Интернет, прикрываясь которым они атакуют другие сети. Если операторы связи не принимают мер предосторожности против таких нападений, то будут отвечать за вред, причиняемый при использовании их доступа к Интернет другим сетям.
Физическая защита
Устройства беспроводного доступа к сети, сами по своей природе должны быть маленькими, и переносимыми (КПК, Ноутбуки), а также точки доступа также имеют небольшой размер и компактность. Кража таких устройств во многом приводит к тому, что злоумышленник может попасть в сеть, не используя сложных атак, т. к. основные механизмы аутентификации в стандарте 802.11 рассчитаны на регистрацию именно физического аппаратного устройства, а не учетной записи пользователя. Так что потеря одного сетевого интерфейса и не своевременное извещение администратора может привести к тому, что злоумышленник получит доступ к сети без особых хлопот.
- 4 Конспекты лекций к дисциплине «Беспроводные технологии передачи измерительной информации»
- Глоссарий
- Общие принципы построения сетей
- Методы передачи дискретных данных на физическом уровне
- Линии связи
- Аппаратура линий связи
- Характеристики линий связи
- Типы кабелей
- Кабели типа Витая пара (twisted pair, tp)
- Волоконно–оптический кабель
- Методы передачи дискретных данных на физическом уровне
- Аналоговая модуляция
- Методы аналоговой модуляции
- Цифровое физическое кодирование
- Логическое кодирование
- Скрэмблирование
- Методы передачи данных канального уровня
- Асинхронные протоколы
- Синхронные символьно-ориентированные и бит-ориентированные протоколы
- Бит–ориентированные протоколы
- Протоколы с гибким форматом кадра
- Передача с установлением соединения и без установления соединения
- Обнаружение и коррекция ошибок
- Методы обнаружения ошибок
- Методы восстановления искаженных и потерянных кадров
- Компрессия данных
- Методы коммутации
- Коммутация каналов
- Коммутация каналов на основе частотного мультиплексирования
- Коммутация каналов на основе разделения времени
- Общие свойства сетей с коммутацией каналов
- Коммутация пакетов
- Виртуальные каналы в сетях с коммутацией пакетов
- Пропускная способность сетей с коммутацией пакетов
- Коммутация сообщений
- Беспроводные сети wifi
- Основные элементы сети wifi
- Основы передачи данных в беспроводных сетях
- Сигналы для передачи информации
- Передача данных
- Модуляция сигналов
- Пропускная способность канала
- Методы доступа к среде в беспроводных сетях
- Технология расширения спектра
- Кодирование и защита от ошибок
- Методы коррекции ошибок
- Методы автоматического запроса повторной передачи
- Архитектура стандарта 802.11
- Стек протоколов ieee 802.11
- Уровень доступа к среде стандарта 802.11
- Распределенный режим доступа dcf
- Централизованный режим доступа pcf
- Кадр mac-подуровня
- Реализация стандартов ieee 802.11
- Ieee 802.11
- Передача в диапазоне инфракрасных волн
- Беспроводные локальные сети со скачкообразной перестройкой частоты (fhss)
- Беспроводные локальные сети, использующие широкополосную модуляцию dsss с расширением спектра методом прямой последовательности
- Ieee 802.11b
- Ieee 802.11a
- Ieee 802.11g
- Ieee 802.11d
- Ieee 802.11e
- Ieee 802.11f
- Ieee 802.11h
- Ieee 802.11i
- Ieee 802.11n
- Режимы и особенности их организации
- Режим Ad Hoc
- Инфраструктурный режим
- Режимы wds и wds With ap
- Режим повторителя
- Режим клиента
- Организация и планирование беспроводных сетей
- Угрозы и риски безопасности беспроводных сетей
- Основы криптографии
- Базовые термины и их определения
- Криптография
- Протоколы безопаснисти беспроводных сетей
- Механизм шифрования wep
- Потоковое шифрование
- Блочное шифрование
- Вектор инициализации (Initialization Vector, IV)
- Обратная связь
- Уязвимость шифроваия wep
- Пассивные сетевые атаки
- Активные сетевые атаки
- Аутенфикация в беспроводных сетях
- Стандарт ieee 802.11 сети с традиционной безопасностью
- Принцип аутентификации абонента в ieee 802.11
- Открытая аутентификация
- Аутентификация с общим ключом
- Аутентификация по mac-адресу
- Уязвимость механизмов аутентификации 802.11
- Проблемы идентификатора беспроводной лвс
- Уязвимость открытой аутентификации
- Уязвимость аутентификации с общим ключом
- Уязвимость аутентификации по mac-адресу
- Спецификация wpa
- Пофреймовое изменение ключей шифрования
- Контроль целостности сообщения
- Стандарт сети 802.11i с повышенной безопасностью (wpa2)
- Стандарт 802.1x/eap (enterprise-Режим)
- Архитектура ieee 802.1x
- Механизм аутентификации
- Технологии целостности и конфиденциальности передаваемых данных
- Развертывание беспроводных виртуальных сетей
- Топология сеть-сеть
- Топология хост-сеть
- Топология хост-хост
- Распространенные туннельные протоколы
- Протокол ipSec
- Протокол рртр
- Протокол l2tp
- Системы обнаружения вторжения в беспроводные сети
- Общая характеристика Personal Area Network
- Стандарт технологии bluetooth (ieee 802.15.1)
- Общие сведения
- Архитектура bluetooth Метод частотных скачков
- Понятие пикосети
- Адрес Bluetooth-устройства (bd_addr)
- Состояния Bluetooth
- Физические каналы
- Процедура опроса
- Типы трафика
- Транспортная архитектура
- Режимы работы Bluetooth
- Форматы пакетов bluetooth
- Типы пакетов
- Стек протоколов bluetooth
- Модели использования
- Профили Bluetooth
- Методы безопасности
- Уровни надежности устройства.
- Перспективы развития технологии: bluetooth 4.0.
- Беспроводная сенсорная сеть zigbee®
- Общие сведения
- Топология беспроводных персональных сетей
- Адресация в персональных сетях ZigBee
- Современные реализации сетей на основе технологии ZigBee Ведущие производители оборудования ZigBee
- Пример реализации сенсорной сети
- Библиографическое описание