logo search
ОНИ

Оборудование для задания тестовых режимов

ТЕМА 4. Изучаемые вопросы: Оборудование для задания тестовых режимов функционирования объектов исследования; Стенды с беговыми барабанами; Стенды для исследования характеристик шин; Стенды для задания тестовых режимов при исследовании автомобильного двигателя.

В процессе эксплуатации автомобилей возникает необходимость периодически определять соответствие параметров, характеризующих их функциональные возможности, нормативным требованиям. На величину подавляющего большинства этих параметров (тормозная сила, расход топлива, сила сопротивления качению, сила тяги и т. п.) в значительной мере влияют внешние факторы, такие как: температура воздуха, его влажность, тип и качество дорожного покрытия, и многие другие. Влияние это настолько существенно, что параметры технического состояния одного и того же автомобиля, измеренные в дорожных условиях в разное время года или при разных погодных условиях, могут отличаться друг от друга на 50% и более. Такая величина погрешности при определении функциональных параметров, конечно же, не дает возможности с высокой степенью достоверности судить о техническом состоянии диагностируемого автомобиля, его агрегатов, механизмов, систем, деталей. Одним из возможных вариантов защиты от внешних факторов является укрытие автомобиля в закрытом помещении. Но как сделать так, чтобы автомобиль мог полноценно функционировать в закрытом помещении.

Одним из решений этого противоречия является применение для исследования автомобилей стендов с беговыми барабанами. Стенды с беговыми барабанами реализуют принцип обратимости движения, суть которого заключается в том, что в процессе исследования движется опорная поверхность стенда, вращаются опорные ролики «движется дорога», работает двигатель, агрегаты и системы, вращаются колеса, а сам автомобиль стоит. Это позволяет обеспечивать автомобилю заданные тестовые воздействия, которые характеризуются режимами его функционирования на стенде (скоростью вращения колес, мощностью, крутящими моментами, частотами вращения, температурными режимами и т.п.). Стенды позволяют выполнять исследования автотранспортных средств, в защищенных от климатических, погодных и прочих внешних воздействий помещениях.

Для задания тестового режима, у стоящего на роликах стенда автомобиля, его агрегаты, системы и механизмы заставляют работать в таких же скоростных и нагрузочных режимах, как при его функционировании в дорожных условиях. Это позволяет исключить влияние внешних факторов на процесс исследования автомобиля, а также с достаточно высокой точностью определять исследуемые параметры.

Анализируя исследовательские возможности стендов с беговыми барабанами, следует отметить, что при помощи передвижных стендов, разработанных в Харьковском автомобильно-дорожном институте под руководством профессора Н.Я. Говорущенко, на одной из дорог г. Харькова было выявлено 77% автомобилей с неисправностями тормозной системы, 51,4% - с дефектами рулевого управления, 88% - с неисправностями ходовой части [9].

Стенды с беговыми барабанами обеспечивают возможность проведения исследований тяговых и тормозных качеств автомобиля, исследовать его ходовые и топливно-экономические показатели, осуществлять исследования качества функционирования его агрегатов, узлов и систем. В качестве примера, на рис. 4 приведен внешний вид стенда с беговыми барабанами конструкции ИрГТУ для диагностики автомобилей.

а)

б)

Рис. 4 Внешний вид стенда с беговыми барабанами конструкции ИрГТУ для диагностики автомобилей, а) рабочее место оператора; б) автомобиль на стенде.

Из схемы (рис. 5) видно, что нагружающими элементами стенда конструкции ИрГТУ являются маховые массы, которые в процессе разгона колес от двигателя автомобиля запасают кинетическую энергию, а при отключении двигателя, отдают эту энергию для поддержания вращения колес автомобиля.

Стенд позволяет проводить исследования тормозных систем автомобилей с функционирующей ABS, а также противозаносных систем.

Рис. 5 Схема тормозного роликового стенда конструкции ИрГТУ: 1 – неподвижная платформа, 2 – подвижная платформа, 3 – опорный ролик, 4, 6 – цепные передачи, 5 – маховая масса, 7 – цепная муфта, 8 – магнитострикционный датчик тормозного момента, 9 – угловой редуктор, 10 – шлицевый карданный вал, 11 – индуктивный датчик угловой скорости опорного ролика, 12 – индуктивный датчик угловой скорости колеса автомобиля (штатный датчик ABS), 13 – датчики веса, 14 – датчик усилия на педали тормоза, 15 – блок усилителей-преобразователей, 16 – АЦП, 17 - ЭВМ

Исследовать работу ходовой части и агрегатов трансмиссии (в том числе и автоматической). Осуществлять исследование гибридных силовых установок и др. Стенд обеспечивает эффективное тестовое воздействие на автомобиль, его агрегаты и системы. Позволяет выполнять измерение исследуемых параметров (тормозных и тяговых сил на колесах, скорости их вращения, а также параметров, характеризующих качество функционирования агрегатов и систем автомобиля) при помощи компьютерного измерительного комплекса.

В процессе исследования характеристик автомобильных шин используют специализированные стенды (рис. 6). Такие стенды обеспечивают возможность исследования характеристик шин, работающих в тормозном, тяговом, ведомом и свободном режиме, в широком диапазоне скоростей вращения (до 400 км/час).

Рис. 6 Внешний вид стенда для испытаний автомобильных шин.

На рис. 7 представлена кинематическая схема для исследования характеристик шин. Беговой барабан 1 имеет специальное покрытие, обеспечивающее заданные значения коэффициента сцепления. Левая часть стенда (с колесом 4) обеспечивает возможность исследования работы колеса в тормозном, ведомом и свободном режиме, при его плоскопараллельном качении. Правая часть стенда (с колесом 16) обеспечивает возможность исследования процессов движения колеса с углами увода. Гидравлические цилиндры 9 и 10 стенда нагружают колеса с эластичными шинами нормальной нагрузкой Fz. Тензобалки 2 и 17 совместно с измерительной аппаратурой стенда осуществляют измерение продольных Rx и Ry боковых реакций, возникающих в пятне контакта шины и бегового барабана 1.

Рис. 7. Структурная схема стенда для испытаний автомобильных шин.

Для качественного исследования топливных насосов высокого давления (ТНВД) дизелей также применяют специальные стенды. Внешний вид одного из таких стендов представлен на рис. 8.

Тестовое воздействие при исследовании ТНВД заключается в обеспечении вращения его вала с заданными фиксированными частотами, и измерении цикловой подачи каждой секцией насоса за заданное количество (обычно 100 или 250) полных ходов её плунжера.

Рис. 3.20. Общий вид стенда для исследования характеристик

эластичных шин

Рис. 3.21. Внешний вид стенда для исследования характеристик

эластичных шин при качении колеса с уводом

Рис. 3.22. Внешний вид стенда для исследования тормозных характеристик эластичных шин при плоскопараллельном качении колеса

Рис. 8 Внешний вид стенда для испытания и регулировки топливных насосов высокого давления

На рис. 9 представлена структурная схема стенда для испытания и регулировки топливных насосов высокого давления, показывающая принцип его работы. Так вращение вала ТНВД с заданными фиксированными частотами и их регулирование обеспечивает электрический привод, состоящий из асинхронного электродвигателя 15, преобразователя частоты переменного тока ПЧ и регулировочного резистора Rэд.

Измерение цикловой подачи каждой секцией ТНВД обеспечивают мерные мензурки 8 стенда. Задание и счет количества полных ходов плунжера обеспечивает привод, управляющий работой блокирующей шторки 7 стенда и счетное устройство. После нажатия на кнопку «Замер» микроконтроллер МК стенда подает электрический сигнал на электронный ключ ЭК. Электронный ключ ЭК включает реле Р2 которое подает напряжение на электрический магнит ЭМ. Электрический магнит ЭМ отводит блокирующую шторку 7 в сторону.

Рис. 9. Структурная схема стенда для испытания и регулировки топливных насосов высокого давления

При этом топливо из форсунок 6 начинает наполнять мерные мензурки 8. Наполнение мензурок будет происходить до тех пор, пока от оптопары 10 на вход микроконтроллера МК не поступит заданное оператором количество импульсов (обычно 100 или 250), по одному за каждый оборот вала ТНВД. На данном стенде измеряют углы подачи каждой секции ТНВД, а также угол опережения впрыска.

При исследовании качества работы цилиндров бензиновых двигателей внутреннего сгорания, используют метод отключения цилиндров. Отключая по очереди каждый из работающих цилиндров и измеряя при этом величину Δne падения скорости вращения коленчатого вала двигателя, можно оценивать качество работы каждого цилиндра:

Δne = ne - ne откл, (6)

где: ne - скорость вращения коленчатого вала двигателя до отключения цилиндра; ne откл - скорость вращения коленчатого вала двигателя после отключения цилиндра.

Чем больше величина падения Δne, тем более качественно работает цилиндр. Тестовое воздействие на работающий бензиновый двигатель в виде последовательного отключения цилиндров реализуют многие приборы и стенды, в том числе и автотестер модели К-484. Внешний вид автотестера модели К-484 представлен на рис. 10.

Рис. 10. Внешний вид автотестера модели К-484 для диагностирования карбюраторных двигателей и их систем.

Структурная схема автотестера модели К-484 для диагностирования карбюраторных двигателей и их систем представлена на рис. 11. Автотестер подключают к системе зажигания двигателя, посредством навешивания индуктивного датчика ИД на высоковольтный провод свечи первого цилиндра, а также подключения провода «Пр» на участок первичной цепи, от катушки зажигания КЗ до коммутатора К. Затем устанавливают работу счетчика в соответствии с числом цилиндров в двигателе, нажав на одну из кнопок «4», «6» или «8». Выбор отключаемого цилиндра производится посредством нажатия на одну из кнопок «1», «2», «3», «4», «5», «6», «7» или «8». Отключение выбранного цилиндра осуществляет тиристор Т. Для этого надо подать электрические импульсы от индуктивного датчика ИД на счетчик, посредством нажатия на кнопку «250 r/min». Счетчик начинает считать импульсы от каждого работающего цилиндра.

Рис. 11 Структурная схема автотестера модели К-484 для диагностирования карбюраторных двигателей и их систем.

В момент начала работы выбранного цилиндра, тиристор Т шунтирует разомкнутый коммутатор К и тем самым оставляет первичную цепь катушки зажигания замкнутой. Искрообразование в выбранном цилиндре не происходит. Скорость ne вращения коленчатого вала двигателя снижается на величину Δne. Стрелочный прибор автотестера со шкалой «r/min» покажет величину падения скорости Δne.

В исследованиях технического состояния автомобильных двигателей часто применяются пневмотестеры (рис. 12), позволяющие проверять герметичность надпоршневого пространства каждого цилиндра.

Рис. 12. Внешний вид пневмотестера модели К-69 для проверки герметичности надпоршневой полости двигателей.

Герметичность надпоршневого пространства цилиндров проверяется по величине утечек сжатого воздуха, поданного в цилиндр через отверстие от вывернутой свечи или форсунки. Для этого входной штуцер 1 пневмотестера (рис. 13) подключают к сети сжатого воздуха с давлением не менее 0,4 МПа и открывают кран 2.

Рис. 13. Структурная схема пневмотестера модели К-69 для диагностирования герметичности надпоршневой полости двигателей.

При помощи редуктора 4 и регулировочной иглы 9 пнвмотестер тарируют так, чтобы при герметично закрытом испытательном наконечнике 13 стрелка манометра 11 отклонялась до правого края шкалы, показывая давление 0,16 МПа или 0% утечки воздуха.

После тарировки выводят поршень контролируемого цилиндра в верхнюю мертвую точку на такте сжатия и в таком положении фиксируют коленчатый вал от поворота. В отверстие свечи (форсунки) вставляют испытательный наконечник и создают тестовое воздействие, подают сжатый воздух в надпоршневую полость двигателя.

По величине падения давления (отклонению стрелки от нулевого положения) оценивают герметичность надпоршневой полости цилиндра. Полость цилиндра считают герметичной, если утечка воздуха не превышает 14%.