Ультразвуковые средства измерений уровня
В уровнемерах, называемых ультразвуковыми, используется метод, основанный на отражении ультразвуковых (УЗК) колебаний от границы раздела сред со стороны жидкости.
В зависимости от используемого параметра звуковой волны для измерения уровня жидкости различают: частотный, фазовый,
импульсный способы измерения уровня.
Мерой уровня жидкости h является время прохождения ультразвуковых колебаний t от пьезометрического преобразователя (излучателя) до плоскости границы раздела среды (жидкость - газ) и обратно до приёмника. Время прохождения ультразвуковых колебаний t определяется выражением:
(17.22) |
где а – скорость распространения звука в жидкости.
Пауза tп между двумя последовательными посылаемыми импульсами определяется выражением:
(17.23) |
Уровнемер (рис. 17.12) состоит из пьезометрического преобразователя 1, электронного блока 7 и вторичного прибора 5. Электронный блок включает в себя генератор 6, задающий частоту повторения импульсов; генератор импульсов 2, посылаемый в жидкость, уровень которой измеряется; приёмного устройства-усилителя 3; схемы измерения времени 4. Генератор, задающий частоту повторения импульсов, управляет работой генератора импульсов и схемой измерения времени. Генератор 2 вырабатывает электрические импульсы с определённой частотой повторения, которые преоразуются в ультразвуковые при помощи пьезометрического преобразователя, установленного с внешней стороны дна резервуара. Распространяясь в жидкой среде, ультразвуковые импульсы отражаются от плоскости границы раздела жидкость-газ и поступают на тот же пьезометрический преобразователь. Отражённые импульсы после обратного преобразования в электрические усиливаются и формируются усилителем 3 и подаются на схему измерения времени. Выходным сигналом измерительной схемы являются постоянное напряжение, которое поступает на вход вторичного прибора 5.
Рис.17.12. Схема ультразвукового уровнемера
Основные достоинства УЗК-метода:
— бесконтактный;
— применим для загрязнённых жидкостей;
— реализация метода не предъявляет высоких требований к износостойкости и прочности оборудования;
— независимость от плотности контролируемой среды.
Недостатки:
— большое расхождение конуса излучения;
— отражения от нестационарных препятствий (например, мешалок) могут вызвать ошибки измерения;
— применим только в резервуарах с нормальным атмосферным давлением;
— на сигнал оказывают влияние пыль, пар, газовые смеси и пена.
В зоне действия датчика можно устанавливать коммутационную зону. Коммутирующий выход датчика можно настроить таким образом, чтобы он срабатывал лишь при появлении какого-либо объекта в установленной коммутационной зоне (снятие переднего плана и фона). Принцип действия датчика изображен на рис.17.13.
Рис.17.13. Подавление эхо-сигнала от стационарного объекта в резервуаре
Подавление паразитного сигнала уменьшает мощность полезного сигнала, и в некоторых случаях приходится оценивать это уменьшение, чтобы не потерять полезный сигнал.
Датчик оснащен средствами для компенсации влияния изменений температуры, подавляет паразитные эхо-сигналы. Кроме того, можно установить внешние зонды, которые контролируют температуру измеряемой поверхности независимо от условий в месте монтажа датчика, что минимизирует погрешности, вызванные температурными колебаниями жидкостями.
Датчики принципа измерения методом направленного электромагнитного излучения работают на основе измерения коэффициента отражения методом совмещения прямого и отражённого испытательных сигналов и определения времени прохождения излученного импульса до поверхности контролируемой среды (временного сдвига отражённого сигнала — рис. 17.14).
Повторяющиеся импульсы наносекундного диапазона длительностей излучаются с интервалом 1 мкс. Принцип измерения напоминает ультразвуковой метод определения уровня. Только в системе с направленным электромагнитным излучением импульсы распространяются не равномерно в пределах границ диаграммы направленности, а локализованы вдоль стержня или троса датчика, играющего роль волновода.
Данный метод базируется на новейших технологиях и дополняет собой список контактных методов измерения. Из-за чрезвычайно низкой мощности и направленности излучения импульсов микроволны не рассеиваются в пространстве, поэтому применение этих устройств не требует согласований с комитетами по радиочастотам.
Рис.17.14. Принципы измерения методом направленного электромагнитного излучения.
Благодаря низкому энергопотреблению достаточно двухпроводной системы подключения микроволнового датчика с питанием через информационный канал. В силу этой же причины датчики являются взрывобезопасными, что позволяет устанавливать их во взрывоопасных зонах вплоть до зон класса 0.
Для обеспечения электромагнитной совместимости микроволновых датчиков предложен специальный метод со скачкообразной перестройкой частоты, который позволяет обнаруживать электромагнитные помехи и маскировать их в динамическом режиме.
Суммируя приведенные данные, можно сформулировать и другие достоинства и преимущества метода направленного электромагнитного излучения.
Основные достоинства метода направленного электромагнитного излучения:
— управление микроволновыми датчиками посредством меню и их калибровка на этапе изготовления обеспечивают простой ввод в эксплуатацию;
— надёжное измерение порошкообразных материалов даже в процессе наполнения ёмкости;
— измерение уровня жидкостей при образовании пены в условиях повышения давления;
— надёжное и точное измерение в обводных и расширительных трубах;
— возможность эффективного устранения помех отражения от арматуры (балок, укосин и др.) и структурных элементов стенок (например гофрированных листов), резервуаров или узких силосных бункеров;
— независимость метода от вида материала (жидкий/сыпучий), плотности, значения диэлектрической постоянной, химической агрессивности среды, проводимости, изменения свойств материала, вызванных процессом комкования;
— абсолютная независимость метода от влияний таких факторов технологического процесса, как давление, температура, наличие подвижных поверхностей, пена/туман/пыль.
Недостатки:
— клейкие вещества могут вызвать отказы;
— диэлектрическая постоянная измеряемого вещества должна быть больше 1,6.
- Департамент образования и молодежной политики
- Оглавление
- Предисловие
- 1. Введение. Классификация элементов систем автоматики Основные понятия и определения
- Обзор развития, современное состояние и значение элементов и технических средств автоматики
- Основные принципы управления и регулирования
- 2. Типовые структуры и средства асу тп Обобщенная блок-схема асу тп. Комплекс типовых функций
- Локальные системы контроля, регулирования и управления
- Автоматизированные системы управления технологическими процессами
- Принципы функциональной и топологической децентрализации
- 3. Типизация, унификация и агрегатирование средств асу тп Основные сведения
- Унифицированные сигналы устройств автоматизации
- Последовательная передача данных
- Параллельная передача данных
- Агрегатные комплексы
- 4. Функциональные схемы автоматизации Общие сведения
- Изображение технологического оборудования и коммуникаций
- Примеры построения условных обозначений приборов и средств автоматизации на функциональных схемах
- Позиционные обозначения приборов и средств автоматизации
- Примеры выполнения функциональных схем автоматизации
- Последовательность чтения функциональных схем автоматизации
- 5. Автоматические регуляторы систем автоматики Общие сведения
- Структурные схемы автоматических регуляторов
- 6. Электронные элементы систем автоматики Электронные компоненты
- Резисторы
- Конденсаторы
- Катушки индуктивности
- Полупроводниковые диоды
- Биполярные транзисторы
- Полупроводниковые тиристоры
- Программируемые логические контроллеры
- 7. Электромагнитные устройства автоматики Электромагниты
- Электромагнитные реле
- Типовые релейные схемы
- Синтез и минимизация дискретных схем логического управления
- 8. Выбор элементов систем автоматики Общие сведения
- Выбор промышленных приборов и средств автоматизации
- 9. Трансформаторы Принцип действия и конструкция
- Основные режимы работы и соотношения в трансформаторе
- 10. Измерительные преобразователи Общие сведения
- Основные характеристики датчиков систем автоматики
- 11. Датчики температуры Общие сведения
- Манометрические термометры
- Термометры сопротивления
- Термоэлектрические преобразователи
- 12. Датчики угловых перемещений Общие сведения
- Шифраторы углового перемещения (положения)
- 13. Датчики давления Общие сведения
- Классификация измерительных преобразователей давления
- Пружинные приборы
- Тензометрические измерительные преобразователи
- Пьезоэлектрические измерительные преобразователи
- 14. Датчики уровня жидкостей и сыпучих материалов Общие сведения
- Уровнемеры поплавковые, буйковые, акустические, ультразвуковые, радиоизотопные, емкостные, дифманометрические
- Датчики-реле уровня поплавковые, емкостные, индуктивные, радиоизотопные, фотоэлектрические, акустические, мембранные и работающие на принципе проводимости
- 15. Технические средства измерения и контроля углового перемещения Тахогенераторы. Общие сведения
- Синхронные тахогенераторы
- Асинхронные тахогенераторы
- Индукторные тахогенераторы
- 16. Технические средства измерения и контроля расхода материалов Общие сведения
- Объемные счетчики
- Скоростные счетчики
- Расходомеры переменного перепада давления (дроссельные расходомеры)
- Расходомеры обтекания
- Расходомеры переменного уровня
- Электромагнитные расходомеры
- 17. Технические средства измерения и контроля уровня среды Визуальные средства измерений уровня
- Поплавковые средства измерений уровня
- Буйковые средства измерений уровня
- Гидростатические средства измерений уровня
- Электрические средства измерений уровня
- Акустические средства измерений уровня
- Ультразвуковые средства измерений уровня
- Радарные средства измерений уровня
- Измерения уровня с помощью магнитных погружных зондов
- Вибрационные сигнализаторы уровня
- 18. Исполнительные механизмы и устройства систем автоматики Общие сведения
- Иу электрические, пневматические и гидравлические
- Электрические исполнительные устройства
- Основные характеристики эиу с электродвигателями
- Позиционные эиу
- 19. Управление вентильными преобразователями Классификация управляемых преобразователей
- Тиристорные преобразователи постоянного тока
- Импульсные преобразователи постоянного тока
- Коммутаторы переменного напряжения
- Непосредственные преобразователи частоты
- Инверторы напряжения
- 20. Электрические машины постоянного тока Общие сведения. Конструкция
- Машина постоянного тока независимого возбуждения. Режимы работы и механические характеристики
- Машина постоянного тока последовательного возбуждения. Режимы работы и механические характеристики
- 21. Электрические машины переменного тока Асинхронная машина переменного тока. Конструкция, режимы работы, механические характеристики
- Синхронная машина переменного тока. Конструкция, режимы работы, механические характеристики
- 22. Электрические микромашины Электрические микромашины постоянного тока
- Электрические микромашины переменного тока
- Шаговые и моментные двигатели
- Двигатели для микроперемещений
- Литература
- 628400, Россия, Ханты-Мансийский автономный округ,