Моделирование переходной характеристики
Исследование систем автоматического управления возможно с использованием метода моделирования. При этом исследуемой системе сопоставляется некоторая адекватная физическая модель системы. Переходные процессы исследуются на модели экспериментально. Полученные результаты (например, переходная характеристика) пересчитываются с использованием масштабных коэффициентов модели к исследуемой системе. Качественные характеристики системы определяются по полученным экспериментальным результатам.
Для моделирования могут использоваться электронные, гидравлические или электромеханические модели. Наиболее распространено моделирование САУ с использованием электронных моделей. Широко распространен структурный метод моделирования, который заключается в представлении исследуемой системы в виде соединения типовых структурных звеньев , каждое из которых моделируется некоторой электронной схемой. В результате исследуемая система представляется в виде электронной модели, на которой и изучаются процессы в системе.
Рассмотрим электронную схему на основе операционного усилителя, приведенную на рис. 100. Будем считать, что в схеме использован идеальный операционный усилитель с бесконечно большим коэффициентом усиления и бесконечно большим входным сопротивлением (,). Тогда для входа усилителя можно записать следующее уравнение Кирхгофа:
, гдеiвх– входной ток от источникаUвх,i0 – ток обратной связи через резисторR0,ic– ток обратной связи через конденсаторC.
Выразим токи через известные параметры рассматриваемой схемы, имея в виду, что для идеального усилителя с бесконечным коэффициентом усиления напряжение в точке входа равно нулю:
,,,.
Подставим полученные значения токов в уравнение Кирхгофа:
. Преобразуем дифференциальное уравнения к общепринятой в теории управления форме записи:
,
.
Перепишем уравнение в операторном виде:
, где,.
На основе полученного дифференциального уравнения для рассматриваемой схемы можно записать передаточную функцию
. Получена передаточная функция типового инерционного звена. Таким образом, с помощью рассмотренной схемы можно моделировать инерционное звено, а параметры звена задавать соответствующим выбором параметров элементов схемы.
Структурное инерционное звено и его электронная модель показаны на рис. 101. Входной x(t)и выходнойy(t)сигналы типового звена моделируются входнымUвхи выходнымUвыхнапряжениями электронной модели. Соотношения между сигналами и напряжениями задаются масштабными коэффициентамиmxиmy:,. Можно масштабировать и время процесса, введя модельное времяи масштабный коэффициент времениmt:.
Выбранные масштабные коэффициенты и параметры k и Tмоделируемого звена задаются коэффициентами усиления операционного усилителя
,.
Для обеспечения этих коэффициентов при настройке модели устанавливаются необходимые значения сопротивлений резисторов и емкость конденсатора электронной схемы.
При моделировании процесса ко входу модели подключается источник напряжения Uвх, а к выходуосциллограф. При подаче на вход модели напряжения осциллограф зафиксирует переходный процесс. Этот процесс затем пересчитывается с учетом масштабных коэффициентов.
Подобные модели используются и для других типовых звеньев. Структурная схема исследуемой системы собирается в виде соединения моделей типовых звеньев. Параметры моделей звеньев рассчитывают исходя из параметров моделируемого структурного звена, что обеспечивает соответствие между процессами в модели и процессами в исследуемой системе. В результате находится процесс в модели и пересчитывается к исследуемой системе.
Возмущения моделируются подачей напряжений на вход модели. Для моделирования сложных возмущений применяются генераторы напряжения со сложной зависимостью выходного напряжения от времени. Электронные модели для электронного моделирование динамических систем получили название аналоговых вычислительных машин (АВМ). Аналоговые вычислительные машины позволяют решать дифференциальные уравнения высокого порядка и получать решение в виде аналогового сигнала, являющегося функцией времени.
- А.В. Федотов теория автоматического управления
- Список сокращений
- Основы теории автоматического управления Введение
- Примеры систем автоматического управления Классический регулятор Уатта для паровой машины
- Система регулирования скорости вращения двигателей
- Автоматизированный электропривод
- Система терморегулирования
- Следящая система автоматического управления
- Система автоматического регулирования уровня
- Обобщённая структура автоматической системы
- Принципы автоматического управления
- Математическая модель автоматической системы
- Пространство состояний системы автоматического управления
- Классификация систем автоматического управления
- Структурный метод описания сау
- Обыкновенные линейные системы автоматического управления Понятие обыкновенной линейной системы
- Линеаризация дифференциального уравнения системы
- Форма записи линеаризованных дифференциальных уравнений
- Преобразование Лапласа
- Свойства преобразования Лапласа
- Пример исследования функционального элемента
- Передаточная функция
- Типовые воздействия
- Временные характеристики системы автоматического управления
- Частотная передаточная функция системы автоматического управления
- Частотные характеристики системы автоматического управления
- Типовые звенья
- 5. Дифференцирующее звено.
- Неустойчивые звенья
- Соединения структурных звеньев
- Преобразования структурных схем
- Передаточная функция замкнутой системы автоматического управления
- Передаточная функция замкнутой системы по ошибке
- Построение частотных характеристик системы
- Устойчивость систем автоматического управления Понятие устойчивости
- Условия устойчивости системы автоматического управления
- Теоремы Ляпунова об устойчивости линейной системы
- Критерии устойчивости системы Общие сведения
- Критерий устойчивости Гурвица
- Критерий устойчивости Найквиста
- Применение критерия к логарифмическим характеристикам
- Критерий устойчивости Михайлова
- Построение области устойчивости системы методом d-разбиения
- Структурная устойчивость систем
- Качество системы автоматического управления Показатели качества
- Точность системы автоматического управления Статическая ошибка системы
- Вынужденная ошибка системы
- Прямые методы анализа качества системы Аналитическое решение дифференциального уравнения
- Решение уравнения системы операционными методами
- Численное решение дифференциального уравнения
- Моделирование переходной характеристики
- Косвенные методы анализа качества Оценка качества по распределению корней характеристического полинома системы
- Интегральные оценки качества процесса
- Оценка качества по частотным характеристикам Основы метода
- Оценка качества системы по частотной характеристике
- Оценка колебательности системы
- Построение вещественной частотной характеристики
- Оценка качества сау по логарифмическим характеристикам
- Синтез системы автоматического управления Постановка задачи синтеза системы
- Параметрический синтез системы
- Структурный синтез системы Способы коррекции системы
- Построение желаемой логарифмической характеристики системы
- Синтез последовательного корректирующего звена
- Синтез параллельного корректирующего звена
- Другие методы синтеза систем автоматического управления
- Реализация систем автоматического управления Промышленные регуляторы
- Особенности реализации промышленных регуляторов
- Настройка промышленных регуляторов
- Управление по возмущению
- Комбинированное управление
- Многосвязные системы регулирования
- Обеспечение автономности управления
- Библиографический список
- Предметный указатель