logo search
САПР

5.3 Задачи анализа, оптимизации и синтеза

Известны три основных постановки задачи проектирования:

В первом случае заданы параметрические ограничения (5.2.2.) и модель (оператор) преобразования F, т.е. заданна полная система математических операций, описывающая численные или логические соотношения между множеством X и Y для получения Z. Требуется найти значение вектора Z для любого Y, удовлетворяющего ограничениям (5.2.2.) и вектору X. Это задача анализа. Она сводится к выполнению расчётов по формуле (5.2.1)

Во втором случае заданны ограничения (5.2.2.), математическая модель (оператор) F, а также заданы функциональные ограничения вида:

{QjH ≤ Qj(X, Y) ≤ QjB, j=1..p} (5.3.1.)

где Qj(X, Y) – некоторая функция от параметров модели, называемая критерием качества модели (оценка характеристик изделий, например по стоимости, по помехозащищённости и др.); QjH. и QjB – нижний и верхний пределы.

Qj(X, Y0)→extr

Каждая модель оценивается некоторой совокупностью критериев качества (их число обозначено через p). Критерии качества дают численное представление о степени соответствия изделия его назначению.

В выражение (5.3.1.) помимо упомянутых критериев качества могут входить функциональные ограничения, характеризующие просто зону работоспособности модели (изделия). Например, по выходным параметрам:

{zi н ≤ zi≤ ziв, i=1..l} (5.3.2.)

где l – число выходных параметров, на диапазон возможных изменений которых наложены ограничения.

В этом случае приходим к задаче оптимального проектирования, которую можно сформулировать следующим образом. В M-мерном пространстве управляемых параметров найти такое множество точек G, которому соответствовало бы в p-мерном пространстве критериев множество точек s, причем для каждой точки множества s выполнялось бы соотношение (5.3.1.). При сформулированном подходе любая точка множества G допускает решение. Поэтому G называют множеством допустимых решений. В результате решения находим вектор Z, отвечающий требованиям оптимальности.

В третьем случае – задача синтеза – при заданных X и параметрических ограничениях (5.2.2.) не задан оператор преобразования F, не известна математическая зависимость между совокупностью входных и выходных параметров. Требуется найти такое преобразование F, при котором выполнялись бы функциональные ограничения вида (5.3.1.).

Синтез технических объектов нацелен на создание новых вариантов конструкций изделий, а анализ на оценку этих вариантов. Синтез и анализ выступают в процессе проектирования в единстве, итерационной последовательности. При синтезе заранее заданны: допустимый набор используемых элементов, накапливаемых в БД, либо стандартные детали механических конструкций. Различают структурный синтез, т.е. поиск оптимальной или рациональной структуры (схемы) технического объекта, говорят в рамках выбранного принципа действия. Например это задача размещения микросхем на печатной плате. Параметрический синтез – определение наилучших динамических параметров при выбранной структуре.