Устойчивость систем автоматического управления Понятие устойчивости
Под устойчивостью понимается свойство системы возвращаться в состояние установившегося равновесия после устранения возмущения, нарушившего это состояние. Свойство устойчивости системы автоматического управления принято иллюстрировать состояниями равновесия шара, находящегося на разных поверхностях (рис. 74).
На рис. 74а система устойчиваи шар возвращается в начальное положение после исчезновения силы, сместившей его из этого положения, на рис. 74бсистема неустойчива, на рис. 74в изображенобезразличноеположение равновесия шара.
При приложении к САУ внешних воздействий (управляющих воздействий или возмущений) в системе возникает переходный процесс у(t), который складывается из двух составляющих: свободные движения системыyc(t), определяемые начальными условиями и свойствами самой системы, и вынужденные движенияyв(t), определяемые внешним воздействием и свойствами системы:
y(t)=yc(t)+yв(t).
Система будет устойчива, если её свободные движения затухают со временем и в системе устанавливается вынужденный процесс
Для неустойчивых систем это условие не выполняется, и практическое их использование является невозможным.
Таким образом, свойство устойчивости САУ является весьма важным свойством, совершенно необходимым для обеспечения работоспособности системы. Поэтому исследование устойчивости САУ является важным элементом теории автоматического управления.
Показателем устойчивости или неустойчивости системы служит вид переходной характеристики системы. Для устойчивой системы переходная характеристика сходится (т.е. стремится к установившемуся значению выходной величины (рис. 75а)). Свободный процесс в устойчивой системе затухает (1колебательный процесс, 2 – апериодический процесс).
Для неустойчивой системы переходная характеристика расходится (рис. 75б). При этом в системе не устанавливается постоянное значение управляемой величины в соответствии с задающим воздействием, а изменение этой величины будет происходить до некоторого предельного состояния системы, определяемого её свойствами. Неустойчивая система не обеспечивает адекватной реакции на задающее воздействие, поэтому такая система неработоспособна. В общем случае для получения переходной характеристики системы необходимо решить дифференциальное уравнение системы. По графику переходного процесса можно сделать заключение об устойчивости системы и об особенностях переходного процесса.
- А.В. Федотов теория автоматического управления
- Список сокращений
- Основы теории автоматического управления Введение
- Примеры систем автоматического управления Классический регулятор Уатта для паровой машины
- Система регулирования скорости вращения двигателей
- Автоматизированный электропривод
- Система терморегулирования
- Следящая система автоматического управления
- Система автоматического регулирования уровня
- Обобщённая структура автоматической системы
- Принципы автоматического управления
- Математическая модель автоматической системы
- Пространство состояний системы автоматического управления
- Классификация систем автоматического управления
- Структурный метод описания сау
- Обыкновенные линейные системы автоматического управления Понятие обыкновенной линейной системы
- Линеаризация дифференциального уравнения системы
- Форма записи линеаризованных дифференциальных уравнений
- Преобразование Лапласа
- Свойства преобразования Лапласа
- Пример исследования функционального элемента
- Передаточная функция
- Типовые воздействия
- Временные характеристики системы автоматического управления
- Частотная передаточная функция системы автоматического управления
- Частотные характеристики системы автоматического управления
- Типовые звенья
- 5. Дифференцирующее звено.
- Неустойчивые звенья
- Соединения структурных звеньев
- Преобразования структурных схем
- Передаточная функция замкнутой системы автоматического управления
- Передаточная функция замкнутой системы по ошибке
- Построение частотных характеристик системы
- Устойчивость систем автоматического управления Понятие устойчивости
- Условия устойчивости системы автоматического управления
- Теоремы Ляпунова об устойчивости линейной системы
- Критерии устойчивости системы Общие сведения
- Критерий устойчивости Гурвица
- Критерий устойчивости Найквиста
- Применение критерия к логарифмическим характеристикам
- Критерий устойчивости Михайлова
- Построение области устойчивости системы методом d-разбиения
- Структурная устойчивость систем
- Качество системы автоматического управления Показатели качества
- Точность системы автоматического управления Статическая ошибка системы
- Вынужденная ошибка системы
- Прямые методы анализа качества системы Аналитическое решение дифференциального уравнения
- Решение уравнения системы операционными методами
- Численное решение дифференциального уравнения
- Моделирование переходной характеристики
- Косвенные методы анализа качества Оценка качества по распределению корней характеристического полинома системы
- Интегральные оценки качества процесса
- Оценка качества по частотным характеристикам Основы метода
- Оценка качества системы по частотной характеристике
- Оценка колебательности системы
- Построение вещественной частотной характеристики
- Оценка качества сау по логарифмическим характеристикам
- Синтез системы автоматического управления Постановка задачи синтеза системы
- Параметрический синтез системы
- Структурный синтез системы Способы коррекции системы
- Построение желаемой логарифмической характеристики системы
- Синтез последовательного корректирующего звена
- Синтез параллельного корректирующего звена
- Другие методы синтеза систем автоматического управления
- Реализация систем автоматического управления Промышленные регуляторы
- Особенности реализации промышленных регуляторов
- Настройка промышленных регуляторов
- Управление по возмущению
- Комбинированное управление
- Многосвязные системы регулирования
- Обеспечение автономности управления
- Библиографический список
- Предметный указатель