Построение частотных характеристик системы
Структура обыкновенной линейной системы автоматического управления всегда будет состоять из типовых звеньев, рассмотренных выше. Эти звенья будут входить в структуру в составе различных соединений: последовательного, параллельного, соединения с обратной связью.
Передаточная функция системы, состоящей из различных соединений типовых звеньев, выразится зависимостью вида
гдеK – коэффициент усиления системы.
Сомножители вида , стоящие в знаменателе выражения, соответствуют инерционным звеньям, входящим в последовательные соединения. Сомножителив знаменателе соответствуют колебательным звеньям, соединённым последовательно. Предполагается, что в системеn инерционных звеньев иhколебательных звеньев.
Параметр pв знаменателе передаточной функции появляется при наличии в структуре системы интегрирующих звеньев. Таких звеньев может быть в системеν, поскольку при наличии в системе интегрирующего звена система становится астатической, то число интегрирующих звеньевνназываютстепенью астатизма системы.
Структура системы может содержать параллельные соединения звеньев. Пусть, например, в системе присутствует параллельное соединение усилительного и интегрирующего звена, тогда передаточная функция этого соединения
.
Из-за присутствия в системе параллельного соединения типовых звеньев в числителе передаточной функции появляются сомножители вида . Для обозначения таких сомножителей их условно приписываютфорсирующим звеньям первого порядка. Форсирующее звено первого порядка имеет динамические свойства, обратные свойствам инерционного звена. Аналогично, сомножители видаприписывают форсирующим звеньям второго порядка, свойства которых противоположны свойствам колебательного звена.
Таким образом, передаточная функция обыкновенной линейной системы будет состоять из произведений типовых сомножителей. Поскольку каждый сомножитель соответствует структурному звену с типовыми динамическими свойствами, то и динамические свойства системы в целом будут комбинацией типовых свойств. Это обстоятельство, в частности, позволяет упростить построение частотных характеристик линейной системы.
Сделав подстановку в приведенное выше выражение для передаточной функции системы, можно перейти к частотной передаточной функции
модуль которой
Используя последнее выражение для амплитудной логарифмической частотной характеристики системы, можно записать
В соответствии с последним выражением для нахождения суммарной амплитудной логарифмической характеристики системы необходимо построить ЛАХ для входящих в систему звеньев, а затем геометрически их суммировать.
Исходя из общего выражения для частотной передаточной функции, можно записать выражение для фазового угла системы
Сомножители числителя частотной передаточной функции обеспечивают положительные фазовые сдвиги, а сомножители знаменателя – отрицательные. Фазовая частотная характеристика системы получается суммированием фазовых частотных характеристик составляющих систему типовых звеньев.
Асимптотическая ЛАХ строится ещё проще, и ее построение рассмотрим на примере. Пусть передаточная функция системы имеет вид
тогда частотная передаточная функция запишется в виде
а модуль частотной передаточной функции
Логарифмическая амплитудная характеристика
при этом слагаемое будет влиять на ход характеристики при, слагаемоеприи т.д.
Частоты называются частотами сопряжения. Учет влияния каждого следующего звена при построении асимптотической характеристики ведется для частот, более высоких, чем соответствующая частота сопряжения, путем изменения наклона характеристики на, в зависимости от знака, стоящего перед слагаемым (на -20 дБ/дек для инерционного звена и +20 дБ/дек для форсирующего звена первого порядка).
В результате суммарная асимптотическая логарифмическая амплитудная характеристика для рассматриваемого примера примет вид, изображенной на рис. 72, где для определенности принято .
Если одно из звеньев системы колебательное, то на соответствующей ему частоте сопряжениянаклон характеристики изменяется на(-40 дБ/дек для колебательного звена и +40 дБ/дек для форсирующего звена второго порядка).
Общие правила построения асимптотической ЛАХ линейной системы следующие:
асимптотическая ЛАХ состоит из прямолинейных отрезков, имеющих разный наклон к оси частот, кратный 20 дБ/дек;
низкочастотный участок ЛАХ проходит через точку и имеет наклон0 дБ/дек для статической системы идБ/дек для астатической системы с астатизмомνпорядка;
влияние каждого звена на ЛАХ системы учитывается начиная с частоты сопряжения, определяемой постоянной времени звена;
учет влияния звена сводится к изменению наклона очередного отрезка ЛАХ на частоте сопряжения следующим образом:
наклон увеличивается на –20 дБ/декдля инерционного звена,
наклон уменьшается на +20 дБ/декдля форсирующего звена первого порядка,
наклон увеличивается на –40 дБ/декдля колебательного звена,
наклон уменьшается на +40 дБ/декдля форсирующего звена второго порядка.
Суммарная логарифмическая фазовая характеристика получается суммированием фазовых характеристик звеньев системы. Для рассмотренного примера фазовая частотная логарифмическая характеристика показана на рис. 73: 1 – ЛФХ интегрирующего звена, 2 – ЛФХ форсирующего звена первого порядка, 3 и 4 – ЛФХ инерционных звеньев, 5 – суммарная фазовая частотная характеристика.
Суммарная фазовая характеристика 5 получена суммированием ординат (с учетом знака) фазовых характеристик звеньев. На рис. 73 положительная полуось фазовых углов направлена вниз.
При построении частотных характеристик системы замена действительной ЛАХ асимптотической ЛАХ для колебательного звена даёт значительную погрешность при малой степени успокоения звена. Если для колебательного звена степень успокоения выходит за пределы , то асимптотическая ЛАХ нуждается в уточнении. Для этого строится точная характеристика путем расчета точек по формулам для колебательного звена (в пределахдек от частоты сопряжения). Учесть особенности характеристики можно также, используя график поправок для ЛАХ колебательного звена, который приводится в литературе по теории управления.
- А.В. Федотов теория автоматического управления
- Список сокращений
- Основы теории автоматического управления Введение
- Примеры систем автоматического управления Классический регулятор Уатта для паровой машины
- Система регулирования скорости вращения двигателей
- Автоматизированный электропривод
- Система терморегулирования
- Следящая система автоматического управления
- Система автоматического регулирования уровня
- Обобщённая структура автоматической системы
- Принципы автоматического управления
- Математическая модель автоматической системы
- Пространство состояний системы автоматического управления
- Классификация систем автоматического управления
- Структурный метод описания сау
- Обыкновенные линейные системы автоматического управления Понятие обыкновенной линейной системы
- Линеаризация дифференциального уравнения системы
- Форма записи линеаризованных дифференциальных уравнений
- Преобразование Лапласа
- Свойства преобразования Лапласа
- Пример исследования функционального элемента
- Передаточная функция
- Типовые воздействия
- Временные характеристики системы автоматического управления
- Частотная передаточная функция системы автоматического управления
- Частотные характеристики системы автоматического управления
- Типовые звенья
- 5. Дифференцирующее звено.
- Неустойчивые звенья
- Соединения структурных звеньев
- Преобразования структурных схем
- Передаточная функция замкнутой системы автоматического управления
- Передаточная функция замкнутой системы по ошибке
- Построение частотных характеристик системы
- Устойчивость систем автоматического управления Понятие устойчивости
- Условия устойчивости системы автоматического управления
- Теоремы Ляпунова об устойчивости линейной системы
- Критерии устойчивости системы Общие сведения
- Критерий устойчивости Гурвица
- Критерий устойчивости Найквиста
- Применение критерия к логарифмическим характеристикам
- Критерий устойчивости Михайлова
- Построение области устойчивости системы методом d-разбиения
- Структурная устойчивость систем
- Качество системы автоматического управления Показатели качества
- Точность системы автоматического управления Статическая ошибка системы
- Вынужденная ошибка системы
- Прямые методы анализа качества системы Аналитическое решение дифференциального уравнения
- Решение уравнения системы операционными методами
- Численное решение дифференциального уравнения
- Моделирование переходной характеристики
- Косвенные методы анализа качества Оценка качества по распределению корней характеристического полинома системы
- Интегральные оценки качества процесса
- Оценка качества по частотным характеристикам Основы метода
- Оценка качества системы по частотной характеристике
- Оценка колебательности системы
- Построение вещественной частотной характеристики
- Оценка качества сау по логарифмическим характеристикам
- Синтез системы автоматического управления Постановка задачи синтеза системы
- Параметрический синтез системы
- Структурный синтез системы Способы коррекции системы
- Построение желаемой логарифмической характеристики системы
- Синтез последовательного корректирующего звена
- Синтез параллельного корректирующего звена
- Другие методы синтеза систем автоматического управления
- Реализация систем автоматического управления Промышленные регуляторы
- Особенности реализации промышленных регуляторов
- Настройка промышленных регуляторов
- Управление по возмущению
- Комбинированное управление
- Многосвязные системы регулирования
- Обеспечение автономности управления
- Библиографический список
- Предметный указатель