Критерии устойчивости Михайлова и Найквиста (частотные)
Частотные критерии устойчивости стационарных линейных систем были найдены Найквистом и Михайловым. Запишем характеристическое уравнение САУ при s = iс целью его рассмотрения в частотной области:
B(i) = bn (i)n + bn-1 (i)n-1+ ...+ bo = A () e i () = P() + i Q() = 0.
При изменении от 0 до, векторB(i)начинает описывать в комплексной плоскости кривую, которую называют кривой Михайлова:
Михайлов доказал что, для того чтобы САУ была устойчива необходимо и достаточно, чтобы вектор кривой B(i)при=повернулся, нигде не обращаясь в 0, вокруг начала координат против часовой стрелки на угол (n)/2, гдеn- степень характеристического уравнения. Отметим, что в неустойчивых системах нарушается последовательность прохождения кривой Михайлова квадрантов комплексной.
В 1932 году Найквистом был опубликован критерий, позволяющий судить об устойчивости замкнутой системы по амплитудно-фазовой характеристике Z(j)разомкнутой системы, что позволило значительно упростить расчеты. Примем во внимание тот факт, что если система управления в разомкнутом состоянии неустойчива, то ее характеристическое уравнение имеетkкорней, лежащих в правой полуплоскостиs. Рассмотрим функцию
1+ Z(i) = 1 +.(2.1)
В числителе этой функции содержится характеристический полином замкнутой системы, в знаменателе – характеристический полином разомкнутой системы. Пусть степень полинома A(s) = a0 sm + a1 sm-1+ ...+ am
не выше степени nполиномаB(s)= b0 sn + b1 sn-1+ ...+ bn .Тогда степени числителя и знаменателя (2.1) одинаковы и равныn. В плоскостиs функция1+ Z(i) изображается вектором, начало которого находится в точке (-1,0), а конец расположен на амплитудно-фазовой характеристике разомкнутой системы.
Для того, чтобы установившееся движение в замкнутой системе было устойчивым, необходимо и достаточно, чтобы при возрастании от0довектор1+ Z(i),скользящий своим концом по амплитудно – фазовой характеристике разомкнутой системы, повернулся вокруг точки (-1, j) в направлении по часовой стрелкеk/2раз, гдеk– число правых корней характеристического уравнения разомкнутой системы. Под правыми корнями здесь понимаются корни, расположенные в правой полуплоскости комплексной плоскостиs.
-
Содержание
- Содержание
- Математическое моделирование систем управления
- Основные понятия
- Математическое описание динамики сар
- Аналитическое построение математической модели
- Задачи проектирования многомерных систем управления
- Преобразование Лапласа. Понятие передаточной функции
- Типовые воздействия
- Типовые звенья обыкновенных линейных систем
- Идеальное интегрирующее звено (интегратор)
- Идеальное дифференцирующее звено
- Неидеальное интегрирующее звено
- Дифференцирующее инерционное звено
- Идеальное форсирующее звено
- Апериодическое звено первого порядка
- Колебательное звено
- Топология систем управления. Способы соединения элементов
- Последовательное соединение
- Соединение с обратной связью
- Вычисление передаточных функций
- Свободное и вынужденное движение
- Характеристическое уравнение. Понятие корневого годографа
- Построение частотных характеристик
- Методы анализа качества систем управления
- Понятие устойчивости систем управления
- Критерии устойчивости Гурвица и Рауса (алгебраические)
- Критерии устойчивости Михайлова и Найквиста (частотные)
- Корневые показатели качества
- Анализ качества сау по переходной характеристике
- Анализ качества сау по частотным характеристикам
- Статические и астатические системы
- Основы оптимизации и методы синтеза систем управления
- Постановка задачи параметрической оптимизации
- Методика решения задачи параметрической оптимизации
- Синтез адаптивных систем управления
- 4.1.Постановка задачи синтеза самонастраивающихся систем
- Процедура синтеза закона управления
- Синтез адаптивного управления при помощи пи- регулятора
- Экстремальные системы управления
- Оптимальное управление
- Аналитическое конструирование регулятора
- Дискретные и цифровые системы управления
- Общие сведения
- Модели дискретных процессов
- Квантование непрерывных сигналов и теорема прерывания
- Использованиеz- преобразования
- Устойчивость и качество дискретных систем
- Цифровые системы управления
- Отдельные вопросы теории управления
- Управляемость и наблюдаемость
- Инвариантные системы управления
- Расчет и анализ чувствительности
- Робастные системы управления
- Литература