2.4.5. Многолучевое распространение
Многолучевое распространение
Используемые в ССС дециметровые радиоволны слабо огибают препятствия, т.е. распространяются в основном по прямой, но испытывают многочисленные отражения от окружающих объектов и подстилающей поверхности. Одним из следствий такого многолучевого распространения является более быстрое, чем в свободном пространстве, убывание интенсивности принимаемого сигнала с расстоянием. Другое следствие - замирания и искажения результирующего сигнала [26, 55].
На рис. 2.29 представлена зависимость напряженности поля от расстояния между БС и ПС. По мере удаления ПС от БС напряженность поля убывает, и данная зависимость не является плавной. Кроме того, если изменить частоту или скорость движения ПС, зависимость значительно изменится, но характер ее останется прежним. Изменение среднего значения напряженности поля в зависимости от расстояния ПС от БС называют затуханием, а всплески - замираниями.
Рис. 2.29. Зависимость напряженности поля от расстояния между БС и ПС В общем виде затухание, при отсутствии помех, может быть выражено в следующем виде
где Рщ, - мощность сигнала, принимаемого ПС; Ртр - мощность сигнала, передаваемого БС; d- расстояние от БС до ПС;/- частота сигнала; с - скорость света.
Как видно из приведенной зависимости, величина затухания пропорциональна квадрату частоты сигнала и квадрату расстояния ПС от БС. Учитывая это, во избежание потерь информации необходимо иметь. требуемую чувствительность приемных устройств в каждый момент времени, а также своевременно осуществлять переключение ПС из зоны действия одной БС в зону действия другой БС.
Картина многолучевого распространения схематически изображена на рис. 2.30. Фактически область существенных отражений ограничивается обычно сравнительно небольшим участком в окрестности ПС - порядка нескольких сотен длин волн, т.е. нескольких десятков или сотен метров. При движении ПС эта область перемещается вместе с ней таким образом, что ПС все время остается вблизи центра области.При сложении нескольких сигналов, прошедших по разным путям и имеющих в точке приема в общем случае различные фазы, результирующий сигнал может быть как выше среднего уровня, так и заметно ниже, причем замирания сигнала, образующиеся при взаимной компенсации сигналов вследствие неблагоприятного сочетания их фаз и амплитуд, могут быть достаточно глубокими. Искажения результирующего сигнала (или межсимвольная интерференция) имеет место в том случае, когда более или менее синфазные составляющие сигналы с соизмеримыми амплитудами настолько отличаются по разности хода, что символы одного сигнала накладываются на соседние символы другого.
Рис. 2.30. Многолучевое распространение в условиях городской застройки
Колебания уровня (замирания) принимаемого сигнала имеют две составляющие — быструю и медленную (рис. 2.29).
Быстрые замирания, являющиеся прямым следствием многолучевого распространения, описываются релеевским законом распределения, и потому иногда называются релеев-скими замираниями. Замирания из-за многолучевости обусловлены сигналами, отраженными от внешних объектов (рис. 2.30). В результате этого приемник ПС принимает несколько однотипных сигналов, но сдвинутых по фазе, что приводит к ослаблению основного сигнала. При этом возможен случай, когда основной сигнал и отраженный равны по мощности, но находятся в противофазе, и это приведет к тому, что результирующий сигнал будет равен нулю, т. е. произойдет прерывание связи.
Диапазон изменений уровня сигнала при быстрых замираниях может достигать 40 дБ, из которых примерно 10 дБ - превышение над средним уровнем и 30 дБ - провалы ниже среднего уровня, причем более глубокие провалы встречаются реже, чем менее глубокие.
При неподвижном абонентском аппарате интенсивность принимаемого сигнала не меняется. При перемещении ПС периодичность флуктуации в пространстве составляет около полуволны, т.е. порядка 10-15 см в линейной мере. Период флуктуации во времени зависит от скорости перемещения ПС: например, при скорости 50 км/ч период флуктуации составляет около 10 мс, а при 100 км/ч - около 5 мс. Частота замираний глубиной 30-10 дБ при скорости порядка 50 км/ч составляет 5-50 провалов в секунду соответственно, а средняя длительность замираний ниже уровня 30-10 дБ при той же скорости - порядка 0,2-2 мс.
Медленные замирания обусловлены эффектом тени, который вызывается препятствиями (здания, горы и т. д.), нарушающими прямую радиовидимость между БС и ПС. Медленные замирания подчиняются логарифмически нормальному закону распределения. Интенсивность медленных флуктуации не превышает 5-10 дБ, а их периодичность соответствует перемещению ПС на десятки метров. Фактически медленные замирания представляют собой изменение среднего уровня сигнала при перемещении ПС, на которые накладываются быстрые замирания вследствие многолучевого распространения.
Основное неудобство в сотовой связи доставляют быстрые замирания, поскольку они бывают достаточно глубокими, и при этом отношение сигнал/шум падает настолько сильно, что полезная информация может существенно искажаться шумами, вплоть до полной ее потери. Для борьбы с быстрыми замираниями используются два основных метода: разнесенный прием, т.е. одновременное использование двух или более приемных антенн; работа с расширением спектра: использование скачков по частоте, а также метода CDMA.
Межсимвольная интерференция может иметь место при значительных разностях хода между различными лучами в условиях многолучевого распространения. Практически разности хода в городских условиях могут достигать единиц микросекунд.
В методе CDMA, при использовании широкополосных сигналов и рейк-приемников, наиболее сильные сигналы выравниваются по задержке и после этого складываются, так что проблема межсимвольной интерференции в значительной мере снимается. В относительно узкополосных ССС, использующих метод TDMA, для борьбы с межсимвольными искажениями применяются эквалайзеры - адаптивные фильтры, устанавливаемые в приемном тракте ЦОС, которые позволяют компенсировать межсимвольные искажения. Для борьбы с последствиями многолучевого распространения, а именно для устранения ошибок, обусловленных как замираниями сигналов, так и межсимвольной интерференцией, используется помехоустойчивое канальное кодирование: блочное и сверточное кодирование, а также перемежение.
Разнесенный прием
Идея разнесенного приема (РП) заключается в совместном использовании нескольких сигналов, различающихся (разнесенных) по какому-либо параметру или координате, причем разнесение должно выбираться таким образом, чтобы вероятность одновременных замираний всех используемых сигналов была много меньше, чем какого-либо одного из них. Т.е. эффективность разнесенного приема тем выше, чем менее коррелированы замирания в составляющих сигналах.
Возможны пять вариантов РП: с разнесением во времени, при этом используются сигналы, сдвинутые во времени один относительно другого; метод легко реализуем лишь в цифровой форме, и улучшение качества приема происходит за счет пропускной способности канала связи; с разнесением по частоте, при этом используются сигналы, передаваемые на нескольких частотах, т.е. происходит расширение используемой полосы частот; с разнесением по углу, или по направлению, при этом прием производится на несколько антенн с рассогласованными (не полностью перекрывающимися) диаграммами направленности; в этом случае сигналы с выходов разных антенн коррелированы тем слабее, чем меньше перекрытие диаграмм направленности, но одновременно падает и эффективность приема (интенсивность принимаемого сигнала), по крайней мере для всех антенн, кроме одной; с разнесением по поляризации, когда, например, две антенны принимают сигналы двух взаимно ортогональных поляризаций; практического значения этот вариант не имеет, поскольку в диапазоне СВЧ замирания на разных поляризациях сильно коррелированы; с разносом в пространстве, т.е. с приемом сигналов на несколько пространственно разнесенных антенн; это единственный метод, находящий практическое применение. Для метода РП необходимы как минимум две приемные антенны, установленные с некоторым смещением одна относительно другой. Выигрыш от РП тем больше, чем больше число используемых антенн, однако при этом возрастает и сложность технического решения. Практическое применение находит система с двумя приемными антеннами, и в основном в БС. В ПС широкого распространения РП не получил.
Важными характеристиками системы РП являются расстояние между антеннами и способ совместного использования сигналов с выходов двух антенн. С ростом расстояния между антеннами корреляция между флуктуациями уровня принимаемых ими сигналов падает, т.е. чем больше разнос антенн, тем выше эффективность РП. Но при этом возрастает и сложность технической реализации, так что практически разнос берется минимально возможным, при котором РП уже достаточно эффективен. Реально разнос обычно составляет около десятка длин волн, т.е. порядка нескольких метров.
При объединении сигналов с выходов двух антенн возможно как использование одного (более сильного) из двух сигналов, так и суммирование обоих сигналов - додетекторное (когерентное) или последетекторное - с равными весами или со взвешиванием, обеспечивающим получение максимума отношения сигнал/шум. В случае двух приемных антенн различие в эффективности этих способов относительно невелико, и на практике обычно применяется наиболее простой из них - выбор максимального из двух сигналов с коммутацией выхода соответствующего приемника на вход тракта последующей обработки.
Скачки по частоте
Идея метода скачков по частоте состоит в том, что несущая частота для каждого ФК периодически изменяется, т.е. каждый ФК периодически переводится на новый частотный канал. Поскольку релеевские замирания являются частотно-селективными, то, если при работе на некоторой частоте имело место замирание, при изменении рабочей частоты на 100-300 кГц замирания с большой вероятностью не будет. Следовательно, при достаточно частых изменениях частоты существенно снижается вероятность длительных замираний, и соответственно в сочетании с перемежением снижается вероятность групповых ошибок, а с одиночными ошибками можно успешно бороться при помощи помехоустойчивого канального кодирования.
Различают медленные и быстрые скачки по частоте. При медленных скачках период изменения частоты много больше длительности символа передаваемого сообщения, а при быстрых скачках - много меньше длительности символа.
Изменение частоты в пределах доступного диапазона может быть как регулярным (циклическим), так и нерегулярным (псевдослучайным), причем в последнем случае может быть выбран любой из имеющихся в наборе вариантов псевдослучайности. Режим работы со скачками по частоте не является обязательным и назначается по команде с центра коммутации.
В практике сотовой связи применение скачков по частоте предусмотрено стандартом GSM - используются медленные скачки с переключением частоты в каждом очередном кадре. Если учесть, что в кадре каждому ФК соответствует один слот, то для любого из ФК такая частота скачков эквивалентна смене частотных каналов с частотой слотов. Принцип использования медленных скачков по частоте в стандарте GSM изображен на рис. 2.31.
Принцип формирования медленных скачков по частоте состоит в том, что сообщение, передаваемое в выделенном абоненту временном интервале TDMA-кадра 0,577 мс, в каждом последующем кадре передается (принимается) на новой фиксированной частоте. В соответствии со структурой кадров время для перестройки частоты составляет около 1 мс.
В процессе скачков по частоте постоянно сохраняется разнос 45 МГц между каналами приема и передачи. Всем активным абонентам, находящимся в одной соте, ставятся в соответствие непересекающиеся последовательности переключения частот, что исключает взаимные помехи при приеме сообщений абонентами. Параметры последовательности переключения частот (частотно-временная матрица и начальная частота) назначаются для каждой ПС в процессе установления канала связи.
- Глава I общие сведения о сетях подвижной связи
- 1.1. Назначение сетей подвижной связи
- 1.2. Сети сотовой подвижной связи
- 1.3. Сети транкинговой связи
- 1.4. Сети персонального радиовызова
- 1.5. Сети мобильной спутниковой связи
- Глава 2 сети сотовой подвижной связи
- 2.1. История развития сотовых сетей
- 2.1.1. Основные даты
- 2.1.2. Поколения сотовой связи
- 2.2. Элементы сетей сотовой связи
- 2.2.1. Функциональная схема
- 2.2.2. Подвижная станция
- 2.2.3. Базовая станция
- 2.2.4. Центр коммутации
- 2.2.5. Интерфейсы сотовой связи
- 2.3. Основные стандарты сотовой связи
- 2.3.1. Аналоговые системы сотовой связи
- 2.3.2. Цифровые системы сотовой связи
- 2.4. Организация каналов доступа
- 2.4.1. Полосы частот сотовой связи
- 2.4.2. Пути повышения емкости системы сотовой связи
- 2.4.3. Принцип повторного использования частот
- 2.4.4. Методы множественного доступа
- 2.4.5. Многолучевое распространение
- 2.5. Процесс обслуживания вызова
- 2.5.1. Алгоритмы функционирования ссс
- 2.5.2. Инициализация и установление связи
- 2.5.3. Аутентификация и идентификация
- 2.5.4. Передача обслуживания
- 2.5.5. Роуминг
- 2.6. Сигнализация в сотовых сетях
- 2.6.1. Сигнализация в сетях стандарта gsm
- 2.7. Услуги сотовой связи
- 2.7.1. Службы сотовой связи
- 2.7.2. Дополнительные услуги
- 2.7.3. Пакетная коммутация в сетях подвижной связи
- 2.11.4. Служба передачи коротких сообщений sms
- 2.11.5. Мобильный доступ к сети Интернет
- Глава 3
- 3.1. Классификация сетей транкинговой связи
- 3.2. Принципы построения транкинговых сетей
- 3.3. Услуги сетей транкинговой связи
- 3.5.3. Транкинговые сети стандарта tetra
- Глава 4
- 4.1. Принципы организации пейджинговой связи
- 4.1.1. Классификация систем пейджинговой связи
- 4.1.2. Ведомственные пейджинговые сети
- 4.1.3. Городские пейджинговые сети
- 4.1.4. Региональные сети персонального радиовызова
- 4.1.5. Федеральные сети персонального радиовызова
- 4.1.6. Спутниковые системы персонального радиовызова
- Глава 5
- 5.5.1. Классификация сетей спутниковой связи
- 5.3. Характеристика систем спутниковой связи
- 5.3.1. Низкоорбитальные системы спутниковой связи
- 5.3.2. Среднеорбитальные системы спутниковой связи
- 5.3.3. Геостационарные системы спутниковой связи