1.1. Задача минимизации булевых функций
Как уже отмечалось, сложность логического выражения определяется числом букв, входящих в это выражение, т.е. числом переменных и их инверсий. В частности, выражение в форме логической суммы минтермов с минимальным числом литерал называют минимальной суммой, т.е. минимальной НДФ (МНДФ). Минимальным числом литерал должны отличаться и минимальные НКФ (МНКФ), т.е. минимальные произведения макстермов (конституэнтов нуля).
Очевидно, что сложность логической функции, а отсюда сложность и стоимость реализующей ее схемы (цепи), пропорциональны числу логических операций и числу вхождений переменных или их отрицаний. В принципе любая логическая функция может быть упрощена непосредственно с помощью аксиом и теорем логики, но, как правило, такие преобразования требуют громоздких выкладок. К тому же процесс упрощения булевых выражений не является алгоритмическим. Поэтому более целесообразно использовать специальные алгоритмические методы минимизации, позволяющие проводить упрощение функции более просто, быстро и безошибочно. К таким методам относятся, например, метод Квайна, метод карт Карно (диаграммы Вейча), метод Квайна - Мак-Класки и др. Эти методы наиболее пригодны для обычной технической практики, особенно минимизация логической функции с использованием карт Карно. Метод карт Карно сохраняет наглядность при числе переменных не более шести. В достаточно редких случаях, когда число переменных больше шести, обычно используют метод Квайна - Мак-Класки.
- Глава 1. Упрощение и минимизация логических функций
- 1.1. Задача минимизации булевых функций
- 1.2. Метод минимизирующих карт.
- 1.3. Метод Квайна и импликантные матрицы
- 1.4. Минимизация функций алгебры логики по методу Квайна - Мак-Класки
- 1.5. Минимизация конъюнктивных нормальных форм
- 1.6. Минимизация неполностью определенных булевых функций
- 1.7. Метод неопределенных коэффициентов
- Глава 2. Методы анализа и синтеза логических электронных схем
- 2.1. Логические операторы электронных схем или цепей
- 2.2. Канонический метод синтеза комбинационных схем.
- 2.3. Минимизация логических схем со многими выходами
- 2.4. Характеристики комбинационных схем
- 2.4. Задачи анализа электронных схем
- 2.5. Анализ комбинационных схем методом синхронного моделирования.
- 2.6. Анализ кс методом асинхронного моделирования
- Глава 3. Основы теории конечных автоматов
- 3.1. Определение абстрактного цифрового автомата
- 3.2. Табличное задание автоматов Мили и Мура
- 3.3. Графический способ задания автомата
- 3.4. Матричный способ задания автомата
- 3.5. Эквивалентность автоматов
- 3.6. Минимизация числа внутренних состояний полностью определенных автоматов
- Глава 4. Структурный цыфровой автомат
- 4.2.Элементарные цифровые автоматы – элементы памяти
- 4.3. Пример канонического метода структурного синтеза автомата
- 4.5. Управляющие и операторные автоматы
- 4.6. Способы описания алгоритмов и микропрограмм
- 4.8. Синтез автомата Мили
- 4.9. Структурный синтез автомата Мили
- Литература
- 1. Савельев а.Я. Прикладная теория цифровых автоматов. -м.: Высшая школа, 1987.
- Оглавление