2.4.3. Принцип повторного использования частот
Основным принципом сотовой связи является повторное использование частот в несмежных сотах, идея которого заключается в том, что в соседних ячейках системы используются разные полосы частот, а через несколько ячеек эти полосы повторяются. Это позволяет при ограниченной общей полосе частот охватить системой сколь угодно большую зону обслуживания и существенно повысить емкость системы [21, 55].
Первым способом организации повторного использования частот, который применялся в аналоговых ССПС, был способ, использующий антенны БС с круговыми диаграммами направленности.
Группа сот с различными наборами частот называется кластером. Определяющим его параметром является количество используемых в соседних сотах частот. На рис. 2.25, например, размерность кластера равна трем. При 3-элементном кластере ячейки с одинаковыми полосами частот повторяются очень часто, что плохо в смысле уровня соканальных помех, т.е. помех от станций системы, работающих на тех же частотных каналах, но в других ячейках. В этом отношении более выгодны кластеры с большим числом элементов (например, на рис. 2.26 изображена схема с семиэлементным кластером). На практике это число может достигать пятнадцати.
Рис. 2.25. Трехэлементный кластер Рис. 2.26. Семиэлементный кластер
С другой стороны, чрезмерное уменьшение радиуса ячеек приводит к значительному увеличению числа пересечений подвижными абонентами границ ячеек, что может вызвать перегрузку устройств управления и коммутации системы. Кроме того, возможно увеличение числа случаев возникновения взаимных помех. И, наконец, при малых значениях R в реальных условиях даже незначительное отклонение положения антенны относительно геометрического центра ячейки может вызвать ощутимое уменьшение отношения сигнал/помеха в системе. В связи с этим в реальных условиях при выборе величины R приходится учитывать все вышеперечисленные обстоятельства и находить компромиссное решение.
Способ организации повторного использования частот с применением антенн БС с круговыми диаграммами направленности предполагает передачу сигнала одинаковой мощности по всем направлениям, что для АС эквивалентно приему помех от всех БС со всех направлений.
Эффективным способом снижения уровня помех может быть использование направленных секторных антенн с узкими диаграммами направленности. В секторе такой направленной антенны сигнал излучается преимущественно в одну сторону, а уровень излучения в противоположном направлении сокращается до минимума. Деление сот на секторы позволяет чаще применять частоты в сотах повторно.
При использовании направленных (в горизонтальной плоскости) антенн с шириной диаграммы направленности 120° или 60° шестиугольная ячейка разбивается на 3 или 6 секторов, в каждом из которых используется своя полоса частот (рис 2.27 - 2.28). Возможны и другие варианты дробления ячеек, причем этот прием широко используется для участков сети с напряженным трафиком в интересах обеспечения необходимой емкости системы.
Рис. 2.27. Модель повторного использования частот в трехсекторных сотах
Самую высокую эффективность использования полосы частот и, следовательно, наибольшее число абонентов сети, работающих в этой полосе, обеспечивает разработанный фирмой Motorola способ повторного использования частот, при котором задействуются две БС. При реализации этого способа (рис. 2.28) каждая частота используется дважды в пределах кластера, состоящего из 4 ячеек; БС каждой из них может работать на 12 частотах, используя антенны с диаграммой направленности шириной 60°.
Разделить обслуживаемую территорию на ячейки (соты) можно двумя способами: либо основанным на измерении статистических характеристик распространения сигналов в системах связи, либо основанным на измерении или расчете параметров распространения сигнала для конкретного района.
Рис. 2.28. Модель повторного использования частот в 6-секторных сотах
При реализации первого способа вся обслуживаемая территория разделяется на одинаковые по форме зоны и с помощью закона статистической радиофизики определяются их допустимые размеры и расстояния до других зон, в пределах которых выполняются условия допустимого взаимного влияния.
Для оптимального, т.е. без перекрытия или пропусков участков, разделения территории на соты могут быть использованы только три геометрические фигуры: треугольник, квадрат и шестиугольник. Наиболее подходящей фигурой является шестиугольник, так как шестиугольная форма наилучшим образом вписывается в круговую диаграмму направленности БС, установленной в центре ячейки. При первом способе интервал между зонами, в которых используются одинаковые рабочие каналы, обычно получается больше требуемого для поддержания взаимных помех на допустимом уровне.
Более приемлем второй способ разделения на зоны. В этом случае тщательно измеряют или рассчитывают параметры системы для определения минимального числа БС, обеспечивающих удовлетворительное обслуживание абонентов по всей территории, определяют оптимальное место расположения БС с учетом рельефа местности, рассматривают возможность использования направленных антенн, пассивных ретрансляторов и смежных центральных станций в момент пиковой нагрузки и т.д.
- Глава I общие сведения о сетях подвижной связи
- 1.1. Назначение сетей подвижной связи
- 1.2. Сети сотовой подвижной связи
- 1.3. Сети транкинговой связи
- 1.4. Сети персонального радиовызова
- 1.5. Сети мобильной спутниковой связи
- Глава 2 сети сотовой подвижной связи
- 2.1. История развития сотовых сетей
- 2.1.1. Основные даты
- 2.1.2. Поколения сотовой связи
- 2.2. Элементы сетей сотовой связи
- 2.2.1. Функциональная схема
- 2.2.2. Подвижная станция
- 2.2.3. Базовая станция
- 2.2.4. Центр коммутации
- 2.2.5. Интерфейсы сотовой связи
- 2.3. Основные стандарты сотовой связи
- 2.3.1. Аналоговые системы сотовой связи
- 2.3.2. Цифровые системы сотовой связи
- 2.4. Организация каналов доступа
- 2.4.1. Полосы частот сотовой связи
- 2.4.2. Пути повышения емкости системы сотовой связи
- 2.4.3. Принцип повторного использования частот
- 2.4.4. Методы множественного доступа
- 2.4.5. Многолучевое распространение
- 2.5. Процесс обслуживания вызова
- 2.5.1. Алгоритмы функционирования ссс
- 2.5.2. Инициализация и установление связи
- 2.5.3. Аутентификация и идентификация
- 2.5.4. Передача обслуживания
- 2.5.5. Роуминг
- 2.6. Сигнализация в сотовых сетях
- 2.6.1. Сигнализация в сетях стандарта gsm
- 2.7. Услуги сотовой связи
- 2.7.1. Службы сотовой связи
- 2.7.2. Дополнительные услуги
- 2.7.3. Пакетная коммутация в сетях подвижной связи
- 2.11.4. Служба передачи коротких сообщений sms
- 2.11.5. Мобильный доступ к сети Интернет
- Глава 3
- 3.1. Классификация сетей транкинговой связи
- 3.2. Принципы построения транкинговых сетей
- 3.3. Услуги сетей транкинговой связи
- 3.5.3. Транкинговые сети стандарта tetra
- Глава 4
- 4.1. Принципы организации пейджинговой связи
- 4.1.1. Классификация систем пейджинговой связи
- 4.1.2. Ведомственные пейджинговые сети
- 4.1.3. Городские пейджинговые сети
- 4.1.4. Региональные сети персонального радиовызова
- 4.1.5. Федеральные сети персонального радиовызова
- 4.1.6. Спутниковые системы персонального радиовызова
- Глава 5
- 5.5.1. Классификация сетей спутниковой связи
- 5.3. Характеристика систем спутниковой связи
- 5.3.1. Низкоорбитальные системы спутниковой связи
- 5.3.2. Среднеорбитальные системы спутниковой связи
- 5.3.3. Геостационарные системы спутниковой связи