Конденсаторы
Электрические конденсаторы предназначены для образования на участке электрической цепи определенной емкости.
Конденсаторы, емкость которых не зависит от значения приложенного напряжения, называются линейными. Емкость нелинейных конденсаторов, например, варикапов, зависит от значения приложенного напряжения.
Линейные конденсаторы подразделяются на конденсаторы постоянной емкости (С= const) и конденсаторы переменной емкости, в которых значение емкости при повороте подвижных пластин (ротора) изменяется в определенных пределах.
Кроме емкости, конденсаторы характеризуются еще рядом параметров:
1. Сопротивление изоляции. Ввиду несовершенства изоляции активное сопротивление конденсатора не бесконечно. Поэтому через него протекает ток, который называется током утечки. Если конденсатор подключен к источнику постоянного напряжения, то сопротивление изоляции можно определить по формуле:
Rиз = U/Iут, | (6.1) |
где U — напряжение источника; Iут — ток утечки.
Произведение сопротивления изоляции на емкость конденсатора называется постоянной времени конденсатора:
(6.2) |
Постоянная времени измеряется в секундах и характеризует скорость саморазряда конденсатора. За время τ напряжение на обкладках отключенного от источника конденсатора уменьшается в 2,72 раза (2,72—приближенное значение числа е).
В различных конденсаторах значение τ бывает очень разным (от 20 до 5000 с), а в некоторых типах (например, в конденсаторах с диэлектриком из полистирола или из фторопласта) достигает 10 суток.
2. Максимальное напряжение. Во избежание электрического пробоя напряжение, подводимое к конденсатору, должно быть ограничено. Напряжение, при котором в течение 1-5 с возникает пробой конденсатора, называется пробивным.
Рабочее напряжение, т.е. максимальное напряжение, под которым конденсатор может работать в течение всего срока службы, выбирается в три – десять раз меньшим, чем пробивное. Иногда в паспорте указывают также испытательное напряжение, под которым понимается напряжение, выдерживаемое конденсатором в течение установленного для него времени (от 5 до 60 с).
3. Добротность. Поскольку сопротивление диэлектрика между обкладками конденсатора не бесконечно, при работе конденсатора в цепи переменного тока на нем выделяется не только реактивная мощность Q=U2/Xc, но и активная мощность Р=U2/Rиз. Резистор Rиз соответствует сопротивлению изоляции. Отношение реактивной мощности Рр к мощности потерь Рп называется добротностью конденсатора Q; следовательно:
Q =Рр/Рп | (6.3) |
Если действующее значение напряжения равно U, то:
(6.4) |
где ω— круговая частота.
Добротность современных высококачественных конденсаторов в рабочем диапазоне частот составляет 1·103. Величина, обратная добротности, называется тангенсом угла потерь (tgδ= 1/Q).
4. Температурный коэффициент емкости (ТКЕ). Значение ТКЕ для разных типов конденсаторов существенно разное. Некоторые типы конденсаторов имеют отрицательный ТКЕ.
5. Частотный диапазон (ограничен собственной индуктивностью конденсатора).
Конденсаторы постоянной емкости (их называют также постоянными конденсаторами) классифицируются обычно по виду используемого диэлектрика.
Керамические конденсаторы выпускаются с различными видами керамического диэлектрика: высокочастотная керамика имеет малые потери (tgδ<6•10-4 при частоте 1 МГц), низкочастотная — значительно большие потери (tgδ<2•10-2 при частоте 1 кГц). Номинальные емкости керамических конденсаторов от 1 пФ до 2,2 мкФ, предельная рабочая частота 10 МГц. ТКЕ керамических конденсаторов лежит в пределах от 1,2•10-6 до 2,2•10-4 °С-1. Рабочее напряжение до 500 В.
Керамические конденсаторы с различными ТКЕ широко применяются в качестве высокостабильиых, компенсационных, контурных, блокировочных, разделительных и других элементов.
Слюдяные конденсаторы обладают рядом ценных качеств, но относительно дороги. Они выпускаются в номиналах от 10 пФ до 1 мкФ и имеют очень малые потери (tgδ<0,0015 при частоте 1 МГц) и ТКЕ (в лучших образцах =0,5•10-4 °С-1). Предельная рабочая частота 10 МГц. Рабочее напряжение до 1500 В. Слюдяные конденсаторы применяются в качестве контурных элементов, а также в различной измерительной аппаратуре.
Стеклянные и стеклокерамические конденсаторы выпускаются в номиналах 10—15 000 пФ. Они имеют tgδ<2•10-3, максимальное рабочее напряжение 500 В.
Бумажные конденсаторы выпускаются в номиналах от 50 пФ до 30 мкФ при рабочих напряжениях до 40 кВ, однако у них большие потери и ТКЕ. Бумажные конденсаторы используются как разделительные и блокировочные, а также в электрических фильтрах.
В пленочных конденсаторах в качестве диэлектрика используются тонкие пленки из высокомолекулярных соединений — полимеров (полистирол, фторопласт, лавсан и др.). Конденсаторы с полистироловым и фторопластовым диэлектриками выпускаются в номиналах 100 пФ—10 мкФ, они имеют малые потери на высоких частотах (tgδ<<10-3), однако допустимая рабочая температура полистироловых конденсаторов ограничена + 40 °С.
Конденсаторы с лавсановым диэлектриком выпускаются емкостью до 100 мкФ, в остальном они подобны полистироловым конденсаторам. Рабочее напряжение некоторых типов пленочных конденсаторов достигает 15000 В.
- Департамент образования и молодежной политики
- Оглавление
- Предисловие
- 1. Введение. Классификация элементов систем автоматики Основные понятия и определения
- Обзор развития, современное состояние и значение элементов и технических средств автоматики
- Основные принципы управления и регулирования
- 2. Типовые структуры и средства асу тп Обобщенная блок-схема асу тп. Комплекс типовых функций
- Локальные системы контроля, регулирования и управления
- Автоматизированные системы управления технологическими процессами
- Принципы функциональной и топологической децентрализации
- 3. Типизация, унификация и агрегатирование средств асу тп Основные сведения
- Унифицированные сигналы устройств автоматизации
- Последовательная передача данных
- Параллельная передача данных
- Агрегатные комплексы
- 4. Функциональные схемы автоматизации Общие сведения
- Изображение технологического оборудования и коммуникаций
- Примеры построения условных обозначений приборов и средств автоматизации на функциональных схемах
- Позиционные обозначения приборов и средств автоматизации
- Примеры выполнения функциональных схем автоматизации
- Последовательность чтения функциональных схем автоматизации
- 5. Автоматические регуляторы систем автоматики Общие сведения
- Структурные схемы автоматических регуляторов
- 6. Электронные элементы систем автоматики Электронные компоненты
- Резисторы
- Конденсаторы
- Катушки индуктивности
- Полупроводниковые диоды
- Биполярные транзисторы
- Полупроводниковые тиристоры
- Программируемые логические контроллеры
- 7. Электромагнитные устройства автоматики Электромагниты
- Электромагнитные реле
- Типовые релейные схемы
- Синтез и минимизация дискретных схем логического управления
- 8. Выбор элементов систем автоматики Общие сведения
- Выбор промышленных приборов и средств автоматизации
- 9. Трансформаторы Принцип действия и конструкция
- Основные режимы работы и соотношения в трансформаторе
- 10. Измерительные преобразователи Общие сведения
- Основные характеристики датчиков систем автоматики
- 11. Датчики температуры Общие сведения
- Манометрические термометры
- Термометры сопротивления
- Термоэлектрические преобразователи
- 12. Датчики угловых перемещений Общие сведения
- Шифраторы углового перемещения (положения)
- 13. Датчики давления Общие сведения
- Классификация измерительных преобразователей давления
- Пружинные приборы
- Тензометрические измерительные преобразователи
- Пьезоэлектрические измерительные преобразователи
- 14. Датчики уровня жидкостей и сыпучих материалов Общие сведения
- Уровнемеры поплавковые, буйковые, акустические, ультразвуковые, радиоизотопные, емкостные, дифманометрические
- Датчики-реле уровня поплавковые, емкостные, индуктивные, радиоизотопные, фотоэлектрические, акустические, мембранные и работающие на принципе проводимости
- 15. Технические средства измерения и контроля углового перемещения Тахогенераторы. Общие сведения
- Синхронные тахогенераторы
- Асинхронные тахогенераторы
- Индукторные тахогенераторы
- 16. Технические средства измерения и контроля расхода материалов Общие сведения
- Объемные счетчики
- Скоростные счетчики
- Расходомеры переменного перепада давления (дроссельные расходомеры)
- Расходомеры обтекания
- Расходомеры переменного уровня
- Электромагнитные расходомеры
- 17. Технические средства измерения и контроля уровня среды Визуальные средства измерений уровня
- Поплавковые средства измерений уровня
- Буйковые средства измерений уровня
- Гидростатические средства измерений уровня
- Электрические средства измерений уровня
- Акустические средства измерений уровня
- Ультразвуковые средства измерений уровня
- Радарные средства измерений уровня
- Измерения уровня с помощью магнитных погружных зондов
- Вибрационные сигнализаторы уровня
- 18. Исполнительные механизмы и устройства систем автоматики Общие сведения
- Иу электрические, пневматические и гидравлические
- Электрические исполнительные устройства
- Основные характеристики эиу с электродвигателями
- Позиционные эиу
- 19. Управление вентильными преобразователями Классификация управляемых преобразователей
- Тиристорные преобразователи постоянного тока
- Импульсные преобразователи постоянного тока
- Коммутаторы переменного напряжения
- Непосредственные преобразователи частоты
- Инверторы напряжения
- 20. Электрические машины постоянного тока Общие сведения. Конструкция
- Машина постоянного тока независимого возбуждения. Режимы работы и механические характеристики
- Машина постоянного тока последовательного возбуждения. Режимы работы и механические характеристики
- 21. Электрические машины переменного тока Асинхронная машина переменного тока. Конструкция, режимы работы, механические характеристики
- Синхронная машина переменного тока. Конструкция, режимы работы, механические характеристики
- 22. Электрические микромашины Электрические микромашины постоянного тока
- Электрические микромашины переменного тока
- Шаговые и моментные двигатели
- Двигатели для микроперемещений
- Литература
- 628400, Россия, Ханты-Мансийский автономный округ,