Свойства преобразования Лапласа
При осуществлении преобразования Лапласа и выполнении математических операций с оригиналами и изображениями используются следующие свойства преобразования Лапласа.
Линейность преобразования Лапласа.
,
где произвольные комплексные числа,F(p); (p)– изображения оригиналовf(p)и (t)соответственно.
Изображение линейной комбинации оригиналов равно такой же линейной комбинации их изображений.
Дифференцирование оригинала
n – кратному дифференцированию оригинала соответствует умножение изображения на pn.
Интегрирование оригинала
Интегрированию интеграла в пределах от 0 до t соответствует деление изображения на р.
Смещение аргумента оригинала
, при этом, если.
Смещению аргумента оригинала на соответствует умножение изображения на .
Смещение аргумента изображения
Смещению аргумента изображения на соответствует умножение оригинала .
Умножение изображений (теория свертывания)
Операция называется сверткой.
Изображение свертки двух оригиналов равно произведению их изображений.
Переход от изображения к оригиналу осуществляется с помощью обратного преобразования Лапласа, выполняемого с использованием формулы обращения:
где С– абсцисса абсолютной сходимости, выбирается так, чтобы все полюсы подынтегральной функции находились слева от нее (рис. 28). Всегда должно быть С>s0. На рис. 28– полюсы функции-изображения.
Обозначениеобратного преобразования Лапласаосуществляется символомL-1или 1/L.
.
Непосредственное использование формулы обращения вызывает значительные сложности. Для упрощения обратного перехода используются таблицы, приводимые в справочниках, и специальные приемы.
Так, если функция-изображение является дробной функцией: , то при выполнении обратного преобразования Лапласа примениморазложение Хевисайда. Пусть функцияимеетm полюсов(корней уравненияB(p)=0), тогда
Пример. Выше мы получили для постоянной величины
Осуществим обратное преобразование Лапласа, используя разложение Хевисайда. В этом случае A(p)=A,B(p)=p, pk=0, m=1,
, следовательно,
В результате обратного преобразования с использованием разложения Хевисайда получена постоянная величина А, что и следовало ожидать.
- А.В. Федотов теория автоматического управления
- Список сокращений
- Основы теории автоматического управления Введение
- Примеры систем автоматического управления Классический регулятор Уатта для паровой машины
- Система регулирования скорости вращения двигателей
- Автоматизированный электропривод
- Система терморегулирования
- Следящая система автоматического управления
- Система автоматического регулирования уровня
- Обобщённая структура автоматической системы
- Принципы автоматического управления
- Математическая модель автоматической системы
- Пространство состояний системы автоматического управления
- Классификация систем автоматического управления
- Структурный метод описания сау
- Обыкновенные линейные системы автоматического управления Понятие обыкновенной линейной системы
- Линеаризация дифференциального уравнения системы
- Форма записи линеаризованных дифференциальных уравнений
- Преобразование Лапласа
- Свойства преобразования Лапласа
- Пример исследования функционального элемента
- Передаточная функция
- Типовые воздействия
- Временные характеристики системы автоматического управления
- Частотная передаточная функция системы автоматического управления
- Частотные характеристики системы автоматического управления
- Типовые звенья
- 5. Дифференцирующее звено.
- Неустойчивые звенья
- Соединения структурных звеньев
- Преобразования структурных схем
- Передаточная функция замкнутой системы автоматического управления
- Передаточная функция замкнутой системы по ошибке
- Построение частотных характеристик системы
- Устойчивость систем автоматического управления Понятие устойчивости
- Условия устойчивости системы автоматического управления
- Теоремы Ляпунова об устойчивости линейной системы
- Критерии устойчивости системы Общие сведения
- Критерий устойчивости Гурвица
- Критерий устойчивости Найквиста
- Применение критерия к логарифмическим характеристикам
- Критерий устойчивости Михайлова
- Построение области устойчивости системы методом d-разбиения
- Структурная устойчивость систем
- Качество системы автоматического управления Показатели качества
- Точность системы автоматического управления Статическая ошибка системы
- Вынужденная ошибка системы
- Прямые методы анализа качества системы Аналитическое решение дифференциального уравнения
- Решение уравнения системы операционными методами
- Численное решение дифференциального уравнения
- Моделирование переходной характеристики
- Косвенные методы анализа качества Оценка качества по распределению корней характеристического полинома системы
- Интегральные оценки качества процесса
- Оценка качества по частотным характеристикам Основы метода
- Оценка качества системы по частотной характеристике
- Оценка колебательности системы
- Построение вещественной частотной характеристики
- Оценка качества сау по логарифмическим характеристикам
- Синтез системы автоматического управления Постановка задачи синтеза системы
- Параметрический синтез системы
- Структурный синтез системы Способы коррекции системы
- Построение желаемой логарифмической характеристики системы
- Синтез последовательного корректирующего звена
- Синтез параллельного корректирующего звена
- Другие методы синтеза систем автоматического управления
- Реализация систем автоматического управления Промышленные регуляторы
- Особенности реализации промышленных регуляторов
- Настройка промышленных регуляторов
- Управление по возмущению
- Комбинированное управление
- Многосвязные системы регулирования
- Обеспечение автономности управления
- Библиографический список
- Предметный указатель