Виды синхронизации в цифровых системах передачи
Для систем передачи с ИКМ-ВРК необходимо обеспечить синхронную и синфазную работу канальных амплитудно-импульсных модуляторов и канальных селекторов, кодирующих и декодирующих устройств.
Синхронность реализуется системой тактовой синхронизации, а синфазность - системой цикловой синхронизации.
Синхронизация по тактовой частоте обеспечивает равенство скоростей обработки сигналов на передаче и приеме и выполняется выделением колебаний тактовой частоты из спектра линейного цифрового сигнала выделителем тактовой частоты (ВТЧ).
Тактовой частотой в системе передачи ИКМ-ВРК является частота следования импульсов группового цифрового сигнала на выходе ФУ (см. рис. 10). В простейшем случае сигнал на выходе ФУ представляет однополярную случайную последовательность импульсов со скважностью, равной двум. Энергетический спектр такой последовательности при одинаковых вероятностях появления «единиц» и «нулей», а также при отсутствии флуктуации длительности и моментов появления импульсов, содержит постоянную составляющую G(0), дискретную и непрерывную составляющие (рис. 12).
Дискретная составляющая представляет собой сумму гармоник тактовой частоты. Составляющая с тактовой частотой может быть выделена из группового ИКМ сигнала узкополосным фильтром, настроенным на эту частоту. В полосу пропускания фильтра в данном случае попадает также часть непрерывного спектра которая играет роль помехи и приводит к флуктуациям тактовой частоты. Очевидно, что флуктуации тем меньше, чем меньше полоса пропускания.
Цикловая синхронизация определяет начало цикла передачи. Поскольку структура цикла всегда известна, цикловая синхронизация позволяет осуществить разделение каналов. Действие систем цикловой синхронизации основано на использовании избыточности группового ИКМ сигнала, которая специально вводится в групповой сигнал. С этой целью, как показано на рис. 11, д, кроме кодовых групп канальных сигналов в состав цикла вводятся дополнительные кодовые группы или отдельные символы цикловой синхронизации, образующие синхросигнал.
Цикловая синхронизация может быть основана также и на использовании статистических свойств передаваемого ИКМ сигнала (цикловая синхронизация с естественной информационной избыточностью).
В системах передачи с ИКМ-ВРК основное применение нашли устройства цикловой синхронизации с использованием синхросигнала. Очевидно, что какая бы группа символов ни была выбрана в качестве синхросигнала, всегда существует определенная вероятность появления такого же сочетания информационных символов в групповом ИКМ сигнале. Если, например, синхросигнал представляет семиразрядную кодовую комбинацию, то при равной вероятности появления в цифровом сигнале символов «1» и «О» вероятность появления ложной синхрогруппы рл = (0,5)7 = 0,0078125. Эта вероятность довольно велика. Поэтому структура синхросигнала является недостаточным признаком, и для осуществления надежной цикловой синхронизации необходимо дополнительно использовать еще одно важное свойство синхросигнала, а именно его периодичность. Периодичность истинного синхросигнала определяется тем, что он появляется всегда на одних и тех же позициях в пределах цикла передачи, а ложные синхрогруппы занимают случайное положение. Контролируя периодичность появления синхрогрупп, можно определить, являются ли они истинными или ложными. Вероятность ошибки при этом оказывается тем меньше, чем большее число циклов используется в процессе принятия решения.
Частота следования циклов всегда кратна тактовой частоте. Поэтому генераторное оборудование может автономно выработать сигнал цикловой синхронизации путем деления тактовой частоты на число, равное числу передаваемых в пределах цикла кодовых групп. Например, в системе типа ИКМ-30, где цикл состоит из 30 кодовых групп каналов, одной кодовой группы, предназначенной для передачи сигналов СУВ, и одной синхрогруппы, частота следования циклов может быть получена делением тактовой частоты на 32. Однако фаза синхроимпульсов, вырабатываемых автономно генераторным оборудованием, может быть произвольной, и задача системы цикловой синхронизации состоит в том, чтобы осуществить их фазирование с сигналами цикловой синхронизации, приходящих с линии.
Совокупность устройств, формирующих кодовую комбинацию синхросигнала, обеспечивающих ее ввод в групповой ИКМ сигнал на передаче и выделение ее из группового ИКМ сигнала на приеме, образуют систему цикловой синхронизации (ЦС).
Система ЦС содержит передатчик и приемник синхросигнала, (рис. 13), где приняты следующие обозначения:
ГОпер и ГОпр - генераторное оборудование передающей и приемной станций соответственно; ФУ - формирующее устройство (см. рис. 10); ВТЧ - выделитель тактовой частоты, необходимый для обеспечения тактовой синхронизации; СС - синхросигнал; РУ -решающее устройство.
Система цикловой синхронизации работает следующим образом. Передатчик с помощью регистра сдвига и логического устройства преобразует периодическую последовательность импульсов, поступающих от ГОпер в кодовую комбинацию, соответствующую сигналу цикловой синхронизации, далее синхросигнал (СС) поступает на ФУ тракта передачи оконечной станции и вводится в групповой ИКМ сигнал. На приемной станции входной сигнал поступает на опознаватель СС приемника синхросигнала, предназначенным для определения кодовой комбинации, соответствующей СС. Опознаватель представляет регистр сдвига, к выходам которого непосредственно или через инверторы подключена схема совпадения. Если структура входной комбинации совпадает с СС, то на выходе опознавателя появляется импульс. Этот импульс подается на один из входов анализатора; на другой его вход подается сигнал, вырабатываемый ГОпр. Если система находится в состоянии циклового синхронизма, то сигналы на входах анализатора совпадают во времени. При отсутствии синхронизма сигналы от опознавателя и ГОпр во времени не совпадают. Выход анализатора подключен к решающему устройств (РУ). Если в течение определенного числа циклов rвх анализатор регистрирует совпадение во времени сигналов на его входах, то РУ принимает решение о наличии в системе синхронизма и никаких изменений в работе ГОпр не производит. Величина rвх называется коэффициентом накопления по входу в синхронизм и обычно он равен 3...4. При несовпадении импульсов на входах анализатора на вход РУ подается сигнал об отсутствии синхронизма. Если в течение определенного числа циклов гвых, называемого коэффициентом накопления по выходу из синхронизма и обычно равным 4...6, синхронизм отсутствует, то РУ отмечает отсутствие синхронизма и формирует сигнал ошибки, вызывающей задержку (торможение) импульсов цикловой синхронизации, вырабатываемых ГОпр, на один период тактовой частоты. Цикл (оказывается увеличенным на время Тт - период тактовой частоты, а расстояние между импульсами от ГОпр и синхрогруппой на один такт уменьшается. Если и при этом они не совпадут, то РУ вновь вырабатывает сигнал ошибки, импульс от ГОпр сдвигается еще на один такт и т. д. Этот процесс будет повторяться до тех пор, пока импульсы цикловой синхронизации и импульсы Г0пр не совпадут, после чего анализатор определит наличие синхронизма. Отметим, что РУ принимает решение о наличии или отсутствии синхронизма не на основании единичного испытания, а только при нескольких последовательных повторениях какого-либо события. Так обеспечивается необходимая защита от ложных синхрогрупп и действия помех.
При появлении в пределах одного цикла ложной синхрогруппы РУ не примет решения о необходимости «торможения» импульсов цикловой синхронизации, а вероятность появления ложных синхрогрупп на одних тех же позициях в течение rвх циклов пренебрежимо мала. С другой стороны, одиночные искажения синхрогрупп помехами не
могут вывести систему из состояния синхронизма, вероятность поражения помехами rвых синхрогрупп подряд также крайне мала.
Сигнал тактовой синхронизации формируется в выделителе тактовой частоты (ВТЧ).
К системам цикловой синхронизации предъявляются следующие основные требования:
время вхождения в синхронизм при первоначальном включении аппаратуры в работу и время восстановления синхронизма после нарушения связи должно быть минимальным;
состояние синхронизма при работе оборудования ЦСП должно поддерживаться непрерывно и автоматически;
объем синхрогруппы в цикле передачи при заданном времени восстановления синхронизма должен быть минимальным;
приемник синхросигнала должен быть помехоустойчивым и среднее время между сбоями синхронизма должно быть по возможности большим.
Выполнение указанных выше требований должно сочетаться с простотой технической реализации, экономичностью и надежностью оборудования систем передачи.
- Основы построения телекоммуникационных систем и сетей
- Предисловие
- Введение
- Лекция 1
- Основные понятия и определения
- Основные понятия и определения. Классификация систем электросвязи
- Вопросы и задачи для самоконтроля
- Лекция 2 Первичные сигналы электросвязи Первичные сигналы электросвязи и их физические характеристики
- Сигналы передачи данных и телеграфии
- Вопросы и задачи для самоконтроля
- Лекция 3 Каналы передачи Каналы передачи, их классификация и основные характеристики
- Типовые каналы передачи
- Вопросы и задачи для самоконтроля
- Лекция 4 Двусторонние каналы Построение двусторонних каналов
- Развязывающие устройства, требования к ним и классификация
- Анализ резисторной дифференциальной системы
- Лекция 5 Трансформаторная дифференциальная система Анализ трансформаторной дифференциальной системы
- Определение условия непропускания тдс от полюсов 4-4 к полюсам 2-2
- Определение входных сопротивлений тдс
- Определение затуханий уравновешенной тдс в направлениях передачи
- Анализ неуравновешенной трансформаторной дифференциальной системы
- Сравнение трансформаторной и резисторной дифференциальных систем
- Лекция 6 Двусторонний канал как замкнутая система Устойчивость двусторонних каналов
- Устойчивость телефонного канала
- Искажения от обратной связи
- Вопросы и задачи для самоконтроля к лекциям 4-6
- Лекция 7 Общие принципы построения многоканальных систем передачи
- Обобщенная структурная схема многоканальной системы передачи
- Методы разделения канальных сигналов
- Взаимные помехи между каналами
- Вопросы и задачи для самоконтроля
- Лекция 8 Принципы формирования канальных сигналов в системе передачи с частотным разделением каналов
- Формирование канальных сигналов
- Способы передачи амплитудно-модулированных сигналов
- Квадратурные искажения при передаче амплитудно-модулированных сигналов
- Лекция 9 Методы формирования одной боковой полосы. Искажения в каналах и трактах сп с чрк
- Фильтровой метод формирования обп
- Многократное преобразование частоты
- Фазоразностный метод формирования обп
- Искажения в каналах и трактах систем передачи с частотным разделением каналов
- Вопросы, задачи и упражнения для самоконтроля к лекциям 8и9
- Лекция 10 Принципы построения и особенности работы систем передачи с временным разделением каналов Структурная схема системы передачи с временным разделением каналов
- Формирование канальных сигналов в системах передачи с временным разделением каналов
- Формирование канальных сигналов с помощью амплитудно-импульсной модуляции.
- Формирование канальных сигналов с помощью широтно-импульсной модуляции.
- Формирование канальных сигналов на основе фазоимпульсной модуляции.
- Выбор вида импульсной модуляции для построения систем передачи с временным разделением каналов
- Помехоустойчивость амплитудно-импульсной модуляции.
- Выбор вида импульсной модуляции для построения систем передачи с временным разделением каналов
- Помехоустойчивость амплитудно-импульсной модуляции.
- Переходные влияния между каналами систем передачи с временным разделением каналов
- Оценка переходных помех 1-го рода.
- Оценка переходных помех 2-го рода.
- Обобщенная структурная схема системы передачи с временным разделением каналов на основе фазоимпульсной модуляции
- Вопросы, задачи и упражнения для самоконтроля
- Лекция 11 Общие принципы формирования и передачи сигналов в цифровых системах передачи Постановка задачи
- Квантование сигналов по уровню
- Оценка шумов квантования Оценка шумов при равномерном квантовании.
- Гармонический сигнал.
- Речевой сигнал.
- Речевой сигнал, поступающий от разных источников.
- Многоканальный групповой телефонный сигнал.
- Телевизионный сигнал.
- Оценка шумов квантования при неравномерном квантовании.
- Кодирование квантованных сигналов
- Обобщенная структурная схема цифровой системы передачи
- Виды синхронизации в цифровых системах передачи
- Принципы регенерации цифровых сигналов
- Линейное кодирование в цсп
- Лекция 12
- Разностные методы кодирования.
- Иерархия цифровых систем передачи
- Дифференциальная импульсно-кодовая модуляция
- Дифференциальная импульсно-кодовая модуляция как система с линейным предсказанием.
- Дельта-модуляция
- Иерархия цифровых систем передачи на основе импульсно-кодовой модуляции
- Объединение цифровых потоков в плезиохронной цифровой иерархии
- Объединение цифровых потоков в синхронной цифровой иерархии
- Вопросы и задачи для самоконтроля к лекциям 11 и 12
- Лекция 13 Общие принципы построения волоконно-оптических систем передачи Краткий исторический очерк
- Обобщенная структурная схема волоконно-оптической системы передачи
- Классификация волоконно-оптических систем передачи. Способы организации двусторонней связи на основе волоконно-оптических систем передачи. Способы уплотнения оптических кабелей
- Лекция 14 Основные узлы оптических систем передачи. Оптический линейный тракт Оптические передатчики
- Требования к источникам оптического излучения: их параметры и характеристики
- Оптические приемники
- Лавинные фотодиоды (лфд).
- Шумы приемников оптического излучения.
- Модуляторы оптической несущей
- Виды модуляции оптической несущей.
- Обобщенная структурная схема оптического линейного тракта
- Оптические усилители
- 1. Усилители Фабри - Перо.
- 2. Усилители на волокне, использующие бриллюэновское расстояние.
- 3. Усилители на волокне, использующие рамановское расстояние,
- 4. Полупроводниковые лазерные усилители (пплу)
- 5. Усилители на примесном волокне
- Вопросы и задачи для самоконтроля к лекциям 13 и 14
- Лекция 15 Общие принципы и особенности построения систем радиосвязи Основные понятия и определения. Классификация диапазонов радиочастот и радиоволн. Структура радиосистем передачи.
- Общие принципы организации радиосвязи. Классификация радиосистем передачи
- Особенности распространения радиоволн метрового -миллиметрового диапазонов
- Антенно-фидерные устройства
- Лекция 16 Построение радиорелейных и спутниковых линий передачи Основные понятия и определения. Классификация радиорелейных линий передачи. Принципы многоствольной передачи
- Виды модуляции, применяемые в радиорелейных и спутниковых системах передачи
- Вопросы для самоконтроля
- Лекция 17 Особенности построения оборудования радиорелейных и спутниковых систем передачи Принципы построения оборудования радиорелейных линий передачи прямой видимости
- Особенности построения тропосферных радиорелейных линий
- Передача сигналов телевизионного вещания по радиорелейным линиям
- Спутниковые системы передачи
- Много станционный доступ с разделением сигналов по форме.
- Принципы построения систем спутникового телевещания - ств
- Вопросы для самоконтроля
- Лекция 18 Общие принципы построения телекоммуникационных сетей Основные понятия и определения
- Назначение и состав сетей электросвязи
- Методы коммутации в сетях электросвязи
- Структура сетей электросвязи
- Принципы построения взаимоувязанной сети связи Российской Федерации
- Многоуровневый подход. Протоколы, интерфейс, стек протоколов
- Элементы теории телетрафика
- Вопросы для самоконтроля
- Лекция 19 Особенности построения вторичных телекоммуникационных сетей Состав и назначение сетей телефонной связи
- Структура вторичных цифровых сетей общего пользования.
- Состав и назначение телеграфных сетей
- Сети передачи данных
- Информационно-вычислительные сети. Сети эвм
- Телематические службы
- Цифровые сети интегрального обслуживания
- Вопросы для самоконтроля
- Лекция 20 Принципы построения сетей и систем радиосвязи Основные понятия и определения
- Основы построения систем сотовой связи
- Основы транкинговых систем радиосвязи
- Основы построения систем беспроводного абонентского радиодоступа
- Технико-экономические аспекты системы беспроводного абонентского радиодоступа
- Вопросы для самоконтроля,
- Основы построения телекоммуникационных систем и сетей