Кодирование квантованных сигналов
Квантованный сигнал, в принципе, можно считать кодовым с основанием кода, равным числу М разрешенных уровней (уровней квантования), и с числом символов в кодовой группе, равным единице. Таким образом, квантованный сигнал является многоуровневым.
Многоуровневые сигналы весьма неудобны для передачи, так как приемник должен различать все разрешенные уровни. Кроме
того, такие сигналы трудно восстановить (регенерировать), если они подверглись действию помех. Иными словами, многоуровневым сигналам в большей степени свойственны недостатки аналоговых сигналов. Поэтому в цифровых системах передачи обычно используются коды со сравнительно низким основанием, чаще всего двоичные. Процесс преобразования многоуровневого сигнала в код с низким основанием называется кодированием. Результатом кодирования является комбинация символов (посылок, цифр), представляющая в соответствующей системе счисления номер разрешенного уровня квантованного сигнала. В цифровых системах передачи широкое применение нашла двоичная система счисления. Запись любого квантованного уровня с М разрешенными уровнями в двоичной системе счисления может быть представлена в виде
(56)
здесь т - число разрядов кода; - разрядная цифра, принимающая значения 0 или 1. С помощью m-разрядного двоичного кода можно закодировать число уровней квантования, равного
М = 2 т . (57)
Поскольку выбор числа уровней квантования определяется допустимой величиной шага квантования, обычно приходится решать обратную задачу: определение минимально необходимого числа разрядов кода, который может быть использован для кодирования при заданном М. Из (57) очевидно, что для двоичного кода имеем
(58)
здесь ent (x) - означает, что берется целая часть числа х.
Например, для кодирования числа 111 необходимое число разрядов будет равно , а запись числа 111 в соответствии с (66) будет иметь вид
т.е. ему соответствует кодовая комбинация 1101111, что соответствует значениям разрядных цифр равных .Набор величин можно рассматривать как ряд эталонных сигналов, имеющих вес, определенный номером разряда. Для нашего примера .
Однозначная связь величины эталонного сигнала с номером разряда двоичного эквивалента разрешенного квантованного уровня позволяет ограничиться передачей в системе связи только ряда величин аi, составляющих кодовую комбинацию (или кодовую группу).
Множество используемых кодовых комбинаций, связанных единым законом построения, называется кодом. Простейшим кодом является код, в основе построения комбинаций которого лежит отношение (56), называется натуральным двоичным кодом. Графически коды удобно изображать кодовыми таблицами, или кодовыми растрами, характеризующими форму взаимной связи уровней квантования и соответствующих им кодовых комбинаций, представляя их по порядку уровней. На рис. 9, а показан кодовый растр пятиразрядного натурального двоичного кода, с помощью которого можно образовать 32 двоичных числа - кодовые комбинации и, следовательно, передать 32 квантованных уровня; 1 («единицы»или «импульсы») и 0 («нули»или «пробелы») показаны здесь соответственно черными и белыми квадратиками. Нумерация уровней дана сверху вниз, вверху указан вес разрядов кода.
Перестановка порядка следования кодовых комбинаций на обратный дает простой обратный код. Например, уровень М = 22 в натуральном коде представляется комбинацией вида 10110 (см. рис. 9, а), обратный код выразится комбинацией вида 01101. Замена всех импульсов в кодовой комбинации на пробелы (или «единиц» на «нули») приводит к инверсному коду. Так, для М = 22 в натуральном коде кодовая комбинация в инверсном коде будет иметь вид 01001.
Другой тип кода, применяемый в цифровых системах передачи, -код Грея (он же рефлексный или зеркальный). Его отличительной особенностью является то, что любые две соседние кодовые группы (см. рис. 9, б) отличаются друг от друга лишь в одном разряде. Это свойство используется при построении кодов и позволяет уменьшить ошибки кодирования. К коду Грея применимы понятия обратный или инверсный.
Еще один класс составляют симметричные коды. Для кодирования отсчетов, например, речевых - телефонных сигналов, которые принимают более или менее одинаковые абсолютные значения выше и ниже своего нулевого уровня, может оказаться удобным использовать первый разряд для обозначения знака полярности, т.е. положительного или отрицательного, а остальные разряды обозначения абсолютной величины. Если не принимать во внимание
первый (высший) разряд, определяющий полярность квантованного АИМ сигнала, то получающаяся кодовая таблица (кодовый растр) оказывается симметричной относительно своей середины. Ясно (см. рис. 9, б), что код Грея также обладает свойством симметрии.
Перечисленными кодами техника цифровых систем передачи не ограничивается. Предложено большое количество кодов, целесообразность использования которых решается конкретными задачами кодирования и требованиями к достоверности передаваемой цифровой информации.
Кодовые группы после передачи по линейному тракту декодируются на приеме, и по отсчетным значениям восстанавливается исходный сигнал.
В современных ЦСП процессы квантования и кодирования, как правило, совмещены и процесс формирования цифрового сигнала называется аналого-цифровым преобразованием (АЦП), а обратный процесс называется цифро-аналоговым преобразованием (ЦАП). Кодеры и декодеры, предназначенные для АЦП и ЦАП, в совокупности называются кодеками.
- Основы построения телекоммуникационных систем и сетей
- Предисловие
- Введение
- Лекция 1
- Основные понятия и определения
- Основные понятия и определения. Классификация систем электросвязи
- Вопросы и задачи для самоконтроля
- Лекция 2 Первичные сигналы электросвязи Первичные сигналы электросвязи и их физические характеристики
- Сигналы передачи данных и телеграфии
- Вопросы и задачи для самоконтроля
- Лекция 3 Каналы передачи Каналы передачи, их классификация и основные характеристики
- Типовые каналы передачи
- Вопросы и задачи для самоконтроля
- Лекция 4 Двусторонние каналы Построение двусторонних каналов
- Развязывающие устройства, требования к ним и классификация
- Анализ резисторной дифференциальной системы
- Лекция 5 Трансформаторная дифференциальная система Анализ трансформаторной дифференциальной системы
- Определение условия непропускания тдс от полюсов 4-4 к полюсам 2-2
- Определение входных сопротивлений тдс
- Определение затуханий уравновешенной тдс в направлениях передачи
- Анализ неуравновешенной трансформаторной дифференциальной системы
- Сравнение трансформаторной и резисторной дифференциальных систем
- Лекция 6 Двусторонний канал как замкнутая система Устойчивость двусторонних каналов
- Устойчивость телефонного канала
- Искажения от обратной связи
- Вопросы и задачи для самоконтроля к лекциям 4-6
- Лекция 7 Общие принципы построения многоканальных систем передачи
- Обобщенная структурная схема многоканальной системы передачи
- Методы разделения канальных сигналов
- Взаимные помехи между каналами
- Вопросы и задачи для самоконтроля
- Лекция 8 Принципы формирования канальных сигналов в системе передачи с частотным разделением каналов
- Формирование канальных сигналов
- Способы передачи амплитудно-модулированных сигналов
- Квадратурные искажения при передаче амплитудно-модулированных сигналов
- Лекция 9 Методы формирования одной боковой полосы. Искажения в каналах и трактах сп с чрк
- Фильтровой метод формирования обп
- Многократное преобразование частоты
- Фазоразностный метод формирования обп
- Искажения в каналах и трактах систем передачи с частотным разделением каналов
- Вопросы, задачи и упражнения для самоконтроля к лекциям 8и9
- Лекция 10 Принципы построения и особенности работы систем передачи с временным разделением каналов Структурная схема системы передачи с временным разделением каналов
- Формирование канальных сигналов в системах передачи с временным разделением каналов
- Формирование канальных сигналов с помощью амплитудно-импульсной модуляции.
- Формирование канальных сигналов с помощью широтно-импульсной модуляции.
- Формирование канальных сигналов на основе фазоимпульсной модуляции.
- Выбор вида импульсной модуляции для построения систем передачи с временным разделением каналов
- Помехоустойчивость амплитудно-импульсной модуляции.
- Выбор вида импульсной модуляции для построения систем передачи с временным разделением каналов
- Помехоустойчивость амплитудно-импульсной модуляции.
- Переходные влияния между каналами систем передачи с временным разделением каналов
- Оценка переходных помех 1-го рода.
- Оценка переходных помех 2-го рода.
- Обобщенная структурная схема системы передачи с временным разделением каналов на основе фазоимпульсной модуляции
- Вопросы, задачи и упражнения для самоконтроля
- Лекция 11 Общие принципы формирования и передачи сигналов в цифровых системах передачи Постановка задачи
- Квантование сигналов по уровню
- Оценка шумов квантования Оценка шумов при равномерном квантовании.
- Гармонический сигнал.
- Речевой сигнал.
- Речевой сигнал, поступающий от разных источников.
- Многоканальный групповой телефонный сигнал.
- Телевизионный сигнал.
- Оценка шумов квантования при неравномерном квантовании.
- Кодирование квантованных сигналов
- Обобщенная структурная схема цифровой системы передачи
- Виды синхронизации в цифровых системах передачи
- Принципы регенерации цифровых сигналов
- Линейное кодирование в цсп
- Лекция 12
- Разностные методы кодирования.
- Иерархия цифровых систем передачи
- Дифференциальная импульсно-кодовая модуляция
- Дифференциальная импульсно-кодовая модуляция как система с линейным предсказанием.
- Дельта-модуляция
- Иерархия цифровых систем передачи на основе импульсно-кодовой модуляции
- Объединение цифровых потоков в плезиохронной цифровой иерархии
- Объединение цифровых потоков в синхронной цифровой иерархии
- Вопросы и задачи для самоконтроля к лекциям 11 и 12
- Лекция 13 Общие принципы построения волоконно-оптических систем передачи Краткий исторический очерк
- Обобщенная структурная схема волоконно-оптической системы передачи
- Классификация волоконно-оптических систем передачи. Способы организации двусторонней связи на основе волоконно-оптических систем передачи. Способы уплотнения оптических кабелей
- Лекция 14 Основные узлы оптических систем передачи. Оптический линейный тракт Оптические передатчики
- Требования к источникам оптического излучения: их параметры и характеристики
- Оптические приемники
- Лавинные фотодиоды (лфд).
- Шумы приемников оптического излучения.
- Модуляторы оптической несущей
- Виды модуляции оптической несущей.
- Обобщенная структурная схема оптического линейного тракта
- Оптические усилители
- 1. Усилители Фабри - Перо.
- 2. Усилители на волокне, использующие бриллюэновское расстояние.
- 3. Усилители на волокне, использующие рамановское расстояние,
- 4. Полупроводниковые лазерные усилители (пплу)
- 5. Усилители на примесном волокне
- Вопросы и задачи для самоконтроля к лекциям 13 и 14
- Лекция 15 Общие принципы и особенности построения систем радиосвязи Основные понятия и определения. Классификация диапазонов радиочастот и радиоволн. Структура радиосистем передачи.
- Общие принципы организации радиосвязи. Классификация радиосистем передачи
- Особенности распространения радиоволн метрового -миллиметрового диапазонов
- Антенно-фидерные устройства
- Лекция 16 Построение радиорелейных и спутниковых линий передачи Основные понятия и определения. Классификация радиорелейных линий передачи. Принципы многоствольной передачи
- Виды модуляции, применяемые в радиорелейных и спутниковых системах передачи
- Вопросы для самоконтроля
- Лекция 17 Особенности построения оборудования радиорелейных и спутниковых систем передачи Принципы построения оборудования радиорелейных линий передачи прямой видимости
- Особенности построения тропосферных радиорелейных линий
- Передача сигналов телевизионного вещания по радиорелейным линиям
- Спутниковые системы передачи
- Много станционный доступ с разделением сигналов по форме.
- Принципы построения систем спутникового телевещания - ств
- Вопросы для самоконтроля
- Лекция 18 Общие принципы построения телекоммуникационных сетей Основные понятия и определения
- Назначение и состав сетей электросвязи
- Методы коммутации в сетях электросвязи
- Структура сетей электросвязи
- Принципы построения взаимоувязанной сети связи Российской Федерации
- Многоуровневый подход. Протоколы, интерфейс, стек протоколов
- Элементы теории телетрафика
- Вопросы для самоконтроля
- Лекция 19 Особенности построения вторичных телекоммуникационных сетей Состав и назначение сетей телефонной связи
- Структура вторичных цифровых сетей общего пользования.
- Состав и назначение телеграфных сетей
- Сети передачи данных
- Информационно-вычислительные сети. Сети эвм
- Телематические службы
- Цифровые сети интегрального обслуживания
- Вопросы для самоконтроля
- Лекция 20 Принципы построения сетей и систем радиосвязи Основные понятия и определения
- Основы построения систем сотовой связи
- Основы транкинговых систем радиосвязи
- Основы построения систем беспроводного абонентского радиодоступа
- Технико-экономические аспекты системы беспроводного абонентского радиодоступа
- Вопросы для самоконтроля,
- Основы построения телекоммуникационных систем и сетей