logo search
разд

Термоэлектрические преобразователи

Термоэлектрические преобразователи (ТЭП) работают на термоэлектрическом эффекте, возникающем в цепи термопары: при разности температур в точках 1 и 2 (рис. 11.2) соединения двух разнородных проводников в цепи термопары возникает термоЭДС.

Рис. 11.2. Цепь термопары

Точку соединения проводников (электродов) 1 называют рабочим концом термопары, точки 2 и 2' — свободными концами. Чтобы термоЭДС в цепи термопары однозначно определялась температурой рабочего конца, необходимо температуру свободных концов термопары поддерживать одинаковой и неизменной.

Возникновение термотока или термоЭДС в современной физике объясняется тем, что различные металлы обладают различной работой выхода электронов и поэтому при соприкосновении двух разнородных металлов возникает контактная разность потенциалов. Кроме того, при различии температур концов проводников в них возникает диффузия электронов, приводящая к возникновению разности потенциалов на концах. Таким образом, оба указанных фактора — контактная разность потенциалов и диффузия электронов — являются слагаемыми результирующей термоЭДС цепи, значение которой зависит в итоге от природы термоэлектродов и разности температур спаев ТЭП.

Для предохранения от механических повреждении и вредного влияния объекта измерения термоэлектроды преобразователя помещают в защитную арматуру.

На рис.11.3,а показано устройство стандартного термо-электрического термометра.

В жесткой защитной гильзе 1 расположены термоэлектроды 3 с надетыми на них изоляционными бусами 4. Спай 2 касается дна защитной гильзы или может быть изолирован от него с помощью керамического наконечника. К термоэлектродам в головке 8 винтами 6 на розетке 5 подсоединяются удлинительные провода 7. Защитная гильза с содержимым вводится в объект измерения и крепится на нем с помощью штуцера 9. Для обеспечения надежного контакта спай 2 изготавливают сваркой, реже пайкой или скруткой (для высокотемпературных ТЭП).

Рис. 11.3. Устройство термоэлектрического термометра

В настоящее время широкое применение находят термоэлектрические термометры кабельного типа (рис. 11.3, б, в).

В тонкостенной оболочке 1 размещены термоэлектроды 3, изолированные друг от друга, а также от стенки оболочки термостойким керамическим порошком 4. Рабочий спай 2 может иметь контакт с оболочкой (рис. 11.3, б) или изолируется от нее (рис. 11.3, в). Оболочку выполняют из высоколегированной нержавеющей стали с наружным диаметром 0,5-6 мм, длиной 10-30 м. Благодаря указанным размерам кабельные термоэлектрические термометры являются весьма гибкими при достаточной механической прочности. Выпускаемые хромель-алюмелевые и хромель-копелевые кабельные термометры можно использовать в интервале температур от —50 до 300°С при давлении в 40 МПа. Внутрь оболочки кабеля помещены от одного до трех ТЭП.

Основной недостаток термопар — значительная инерционность (в обычной арматуре показатель тепловой инерции составляет несколько минут). В настоящее время известны конструкции малоинерционных термопар, у которых показатель тепловой инерции составляет не более 5 с.