logo search
622221s_i_622231 версия 2 / 622231 / очн 622231 / СИСТООХИПИ 622231 / МУ_ПЗ_СИСТООХИПИ_защ

Аналого-цифровые преобразователи

Виды аналого-цифровых преобразоваталей и их особенности. Аналого-цифровые преобразователи (АЦП) представляют собой устройства, предназначенные для преобразования электрических величин (напряжения, тока, мощности, сопротивления, емкости и др.) в цифровой код. Наиболее часто входной величиной является напряжение. Все другие величины перед подачей на такой АЦП нужно предварительно преобразовывать в напряжение. Однако на практике находят применение также преобразователи, например, сопротивления или емкости в цифровой код без промежуточного преобразования в напряжение. Обычно это позволяет уменьшить погрешность преобразования, но усложняет проектирование преобразователя и его изготовление. Последнее объясняется тем, что серийные промышленные микросхемы АЦП предназначены только для работы с напряжением. Поэтому в дальнейшем будут рассмотрены только преобразователи напряжения в цифровой код.

В общем случае напряжение характеризуется его мгновенным значением u(t). Однако для оценки напряжения можно также пользоваться его средним за выбранный промежуток времени Т значением:

В связи с этим все типы АЦП можно разделить на две группы: АЦП мгновенных значений напряжения и АЦП средних значений напряжения. Так как операция усреднения предполагает интегрирование мгновенного значения напряжения, то АЦП средних значений часто называют интегрирующими.

При преобразовании напряжения в цифровой код используются три независимых операции: дискретизация, квантование и кодирование. Процедура аналого-цифрового преобразования непрерывного сигнала представляет собой преобразование непрерывной функции напряжения u(t) в последовательность чисел u(tn), где = 0,1,2..., отнесенных к некоторым фиксированным моментам времени. При дискретизации непрерывная функция u(t) преобразуется в последовательность ее отсчетов u(tn), как показано на рис. 2.5 а.

Вторая операция, называемая квантованием, состоит в том, что мгновенные значения функции u(t) ограничиваются только определенными уровнями, которые называются уровнями квантования. В результате квантования непрерывная функция u(t) принимает вид ступенчатой кривой uk(t) показанной на рис. 2.6.

Рис. 2.5. Процесс дискретизации (а) и квантования (б) непрерывного

сигнала u(t)

Третья операция, называемая кодированием, представляет дискретные квантованные величины в виде цифрового кода, т. е. последовательности цифр, подчиненных определенному закону. С помощью операции кодирования осуществляется условное представление численного значения величины.

Рис. 2.6. Характеристика идеального квантования (а) и график изменения погрешности квантования (б)

Выходной величиной АЦП является цифровой код, т. е. последовательность цифр, с помощью которой представляются дискретные кантованные величины. В АЦП используют четыре основных типа кодов: натуральный двоичный, десятичный, двоично-десятичный и код Грея. Кроме этого, АЦП, предназначенные для вывода информации в десятичном коде, выдают на своем выходе специализированный код для управления семисегментными индикаторами.

Большинство АЦП работают с выходом в натуральном двоичном коде, при котором каждому положительному числу N ставится в соответствие код

где bi равны нулю или единице. При этом положительное число в двоичном коде имеет вид

(2.9)

Такой код принято называть прямым: его крайний правый разряд является младшим, а крайний левый - старшим. Прямой код пригоден лишь для работы с однополярными сигналами. Полный диапазон преобразуемого сигнала равен 2n, a Nmax = 2n - 1.

Двоичные числа, используемые в АЦП, как правило нормализованы, т. е. их абсолютное значение не превышает единицы. Они представляют собой отношение входного сигнала к полному диапазону:

(2.10)

Если АЦП должен работать с двуполярными числами, то наиболее часто используют дополнительный код, который образуется вычитанием преобразуемого числа С из постоянной величины 2n+1. Иначе говоря, находится дополнение до двух к числу С. Диапазон представления чисел в двоичном коде имеет значение от 2-m до 1-2-m. Нуль имеет одно значение 000...0.

При использовании в АЦП двоично-десятичных кодов каждая значащая десятичная цифра представляется четырьмя двоичными знаками и содержит десять значений сигнала от 0 до 9. Так, например, десятичное число 10 можно представить как 0001 0000, а число 99 можно представить в виде 1001 1001.

Основные характеристики АЦП. Любой АЦП является сложным электронным устройством, которое может быть выполнено в виде одной интегральной микросхемы или содержать большое количество различных электронных компонентов. В связи с этим характеристики АЦП зависят не только от его построения, но и от характеристик элементов, которые входят в его состав. Тем не менее большинство АЦП оценивают по их основным метрологическим показателям, которые можно разделить на две группы: статические и динамические.

К статическим характеристикам АЦП относят: абсолютные значения и полярности входных сигналов, входное сопротивление, значения и полярности выходных сигналов, выходное сопротивление, значения напряжений и токов источников питания, количество двоичных или десятичных разрядов выходного кода, погрешности преобразования постоянного напряжения и др. К динамическим параметрам АЦП относят: время преобразования, максимальную частоту дискретизации, апертурное время, динамическую погрешность и др.

Рассмотрим некоторые из этих параметров более подробно. Основной характеристикой АЦП является его разрешающая способность, которую принято определять величиной, обратной максимальному числу кодовых комбинаций на выходе АЦП. Разрешающую способность можно выражать в процентах, в количестве разрядов или в относительных единицах. Например, 10-разрядный АЦП имеет разрешающую способность (1024)-1 ≈ 10-3 = 0,1 %. Если напряжение шкалы для такого АЦП равно 10В, то абсолютное значение разрешающей способности будет около 10 мВ.

Реальное значение разрешающей способности отличается от расчетного из-за погрешностей АЦП. Точность АЦП определяется значениями абсолютной погрешности, дифференциальной и интегральной нелинейности. Абсолютную погрешность АЦП определяют в конечной точке характеристики преобразования, поэтому ее обычно называют погрешностью полной шкалы и измеряют в единицах младшего разряда.

Дифференциальную нелинейность (DNL) определяют через идентичность двух соседних приращений сигнала, т. е. как разность напряжений двух соседних квантов: DNL = hi - hi+1. Определение дифференциальной нелинейности показано на рис. 2.7 а.

Интегральная нелинейность АЦП (INL) характеризует идентичность приращений во всем диапазоне входного сигнала. Обычно ее определяют, как показано на рис. 2.7 б, по максимальному отклонению сглаженной характеристики преобразования от идеальной прямой линии, т. е. INL = u′i - ui

Время преобразования Tпp обычно определяют как интервал времени от начала преобразования до появления на выходе АЦП устойчивого кода входного сигнала. Для одних типов АЦП это время постоянное и не зависит от значения входного сигнала, для других АЦП это время зависит от значения входного сигнала. Если АЦП работает без устройства выборки и хранения, то время преобразования является апертурным временем.

Рис. 2.7. Определение дифференциальной нелинейности (а) и интегральной нелинейности (б)

Максимальная частота дискретизации - его частота, с которой возможно преобразование входного сигнала, при условии, что выбранный параметр (например, абсолютная погрешность) не выходит за заданные пределы. Иногда максимальную частоту преобразования принимают равной обратной величине времени преобразования. Однако это пригодно не для всех типов АЦП.

Принципы построения АЦП. Все типы используемых АЦП можно разделить по признаку измеряемого значения напряжения на две группы: АЦП мгновенных значений напряжения и АЦП средних значений напряжения (интегрирующие АЦП).

АЦП мгновенных значений можно разделить на следующие основные виды: последовательного счета, последовательного приближения, параллельные, параллельно-последовательные и с промежуточным преобразованием в интервал времени.

Структурная схема АЦП последовательного счета приведена на рис. 2.8 а. Она содержит компаратор, при помощи которого выполняется сравнение входного напряжения с напряжением обратной связи. На прямой вход компаратора поступает входной сигнал uвх, а на инвертирующий - напряжение u5 обратной связи. Работа преобразователя начинается с приходом импульса "ПУСК" от схемы управления (на рисунке она не показана), который замыкает ключ S. Через замкнутый ключ S импульсы u1 от генератора тактовых импульсов поступают на счетчик, который управляет работой цифро-аналогового преобразователя (ЦАП). В результате последовательного увеличения выходного кода счетчика N происходит последовательное ступенчатое увеличение выходного напряжения u5ЦАП. Питание ЦАП выполняется от источника опорного напряжения u4.

Когда выходное напряжение ЦАП сравняется с входным напряжением, произойдет переключение компаратора и по его выходному сигналу "СТОП" разомкнется ключ S. В результате импульсы от генератора перестанут поступать на вход счетчика. Выходной код, соответствующий равенству ивх = и5, снимается с выходного регистра счетчика.

Графики, иллюстрирующие процесс преобразования напряжения в цифровой код, приведены на рис. 2.8 б. Из этих графиков видно, что время преобразования переменное и зависит от уровня входного сигнала. При числе двоичных разрядов счетчика, равном п, и периоде следования счетных импульсов Т максимальное время преобразования можно определить по формуле:

(2.11)

Рис. 2.8. Структурная схема АЦП последовательного счета (а) и графики процесса преобразования (б)

Так, например, при п = 10 разрядов и T = 1мкс (т.е. при тактовой частоте 1 МГц) максимальное время преобразования равно

что обеспечивает максимальную частоту преобразования около 1 кГц.

Уравнение преобразования АЦП последовательного счета можно записать в виде:

где 0 ≤ k ≤ n - число ступеней до момента сравнения, ∆U = h - значение одной ступени, т. е. шаг квантования.