Анализ и определение параметров нелинейности электронных усилителей каналов ВЧ связи по ЛЭП и выбор оптимального режима

курсовая работа

3.1 Определения параметров нелинейности и выбор оптимального режима

Пусть требуется аппроксимировать полиномом седьмой степени экспериментальную зависимость коэффициента усиления усилителя на ПТ 2П902А и на основе вычисленных коэффициентов аппроксимации и гармонического анализа с использованием метода МКП по формулам (2-6) определить параметры нелинейности и выбрать оптимальный режим транзистора.

Аппроксимацию проводим в следующей последовательности.

1. Задаем 11 экспериментальных значений коэффициента усиления в равноотстоящих точках напряжения смещения «затвор-исток» в интервале В. Эти данные, а также вспомогательные значения нечетных 2Кн и четных 2Кч компонент коэффициента усиления в симметричных точках смещения Uзи сводим в табл. 2.

Таблица 2

х

-1,0

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1,0

Uзи

-1,5

-1,2

-0,9

-0,6

-0,3

0

0,3

0,6

0,9

1,2

1,5

Кэ

0

4,57

10,5

15,8

18,6

20,52

21,38

22

22,18

21,48

19,8

В0

0.0096976

4,462

9,644

13.178

15.646

17.696

19.286

20.133

20.42

20.855

21.141

С помощью современных компьютерных программ получаем истинный полином по степени

По найденному уравнению вычисляем и заносим в нижнюю графу табл. 2 значения В0 в контрольных точках напряжения смещения .

Из сопоставления экспериментальных значений и теоретических В0 рис. 4 видим, что совпадение очень хорошее. Абсолютная ошибка находится в пределах сотых долей, что характеризует пригодность результатов аппроксимации для дальнейшего гармонического анализа различных нелинейных явлений.

Полученные коэффициенты аппроксимации используем для определения параметров нелинейности и коэффициентов интермодуляционных искажений в широком диапазоне смещений , что позволит выбрать по этому виду нелинейности оптимальный режим, при котором стремится к нулю, а коэффициент усиления В0 максимально возможный. Заметим, что экспериментальные определения коэффициентов и параметров нелинейности на основе ранее описанного двухсигнального метода связано с громоздкими измерениями. При этом определение оптимального режима становится вовсе проблематичным.

Рис. 4. Экспериментальная и теоретическая (пунктиром) криве (аппроксимирующий полином) и полученная зависимость в функции от напряжения затвора усилителя на ПТ 2П905А

Для определения найдем первую и вторую производные полинома

значение которых целесообразно занести в табл. 3, совмещая их с данными самого полинома в тех же контрольных точках

Далее по формуле (11) вычисляем

который заносим в табл. 3 и по ее данным строим совмещенные зависимости и в функции от напряжения и определяем оптимальный режим, при котором параметр имеет минимальное значение при максимально возможном коэффициенте усиления (рис. 4).

Таблица 3

, В

-1,5

-1,2

-0,9

-0,6

-0,3

0

0,3

0,6

0,9

1,2

1,5

0.0096976

4,462

9,644

13.178

15.646

17.696

19.286

20.133

20.42

20.855

21.141

---

0.0982938

-11.619

-6.5484803

-2.1759836

-2.7231472

-4.9372067

-3.8815738

1.2737163

1.4615575

-28.0726744

, 1/В2

---

0.011

-0.602

-0.248

-0.139

-0.077

-0.127

-0.096

0.061

0.07

-0.664

По графику легко определить, что оптимальный режим составляет ?2 В, при этом имеет место максимальное ослабление комбинационных составляющих 3-го порядка с амплитудами и частотами и .

Коэффициент интермодуляционных составляющих , соответствующий этому ослаблению, согласно формулы (4) при амплитуде бигармонического интермодулирующего сигнала на выходе

В (рис. 3) равен:

=0,25··0,142=0,000377 раз

или в дБ: (дБ)=20lq k3=20lq0,000377?68 дБ.

Приравнивая вторую производную к нулю, находим корни полинома

Делись добром ;)