Проектирование информационно-коммуникационной оптической сети связи железной дороги

курсовая работа

1.3 Выбор топологии построения волоконно-оптической линии связи

Многие важнейшие характеристики сетей связи определяются их топологией, характеризующей связность узлов сети линиями связи и позволяющей оценить надежность и пропускную способность сети при повреждениях.

Выбор топологии основывается на разумном компромиссе между надежностью сети, ее стоимостью и простотой технического обслуживания. При проектировании систем для железнодорожной связи приоритетными являются показатели надежности, которые связаны со способностью восстановления после отказов в сети,

включая отказы линий связи, узлов и оконечных устройств. Топология сети должна обеспечивать локализацию неисправностей, возможность отключения отказавшего оборудования, введение обходных маршрутов и изменения конфигурации сети.

Простота технического обслуживания сети определяется тем, насколько выбранная топология позволяет упростить диагностирование, локализацию и устранение неисправностей.

Стоимость сети во многом зависит от числа и сложности узлов и линий связи. Выбранная топология сети должна, по возможности, обеспечивать оптимальное соединение узлов линиями связи так, чтобы общая стоимость передающей, аппаратной сред и программного обеспечения была минимальной.

Линейной топологией, или схемой "точка-точка", принято называть схему, связывающую два узла сети (оконечные станции), на каждом из которых формируются и заканчиваются все информационные потоки, передаваемые между узлами. Для их передачи посредством ВОСП используются два волокна (по одному в каждом направлении передачи), а при резервировании волокон - четыре (резерв 1+1 или 1:

1), (рисунок 6, а). Она является наиболее простой и используется при передаче больших цифровых потоков по высокоскоростным магистральным каналам.

Развитием линейной топологии при последовательном соединении узлов сети (или нескольких пунктов выделения каналов) является цепочечная топология с возможностью многократного ввода-вывода в узлах сети (пунктах выделения каналов) одного общего для всех пунктов выделения канала (схема "точка-многоточка") или разных каналов из единого цифрового потока, (рисунок 6, б).

Звездная топология сети характеризуется тем, что каждый узел сети (пункт выделения каналов) имеет двухстороннюю связь по отдельной линии с центральным узлом - концентратором (обладающего функциями мультиплексора ввода - вывода и системы кроссовой коммутации), благодаря которому и обеспечивается полная физическая связность сети, (рисунок 6, г). Необходимо отметить, что при общем стандартном наборе функций оборудования SDH/СЦИ, определяемом рекомендациями МСЭ, мультиплексоры, выпускаемые конкретными производителями оборудования могут не иметь полный набор вышеперечисленных возможностей, либо, наоборот, иметь дополнительные.

Наиболее характерной топологией для сетей SDH/СЦИ является кольцевая. Она характеризуется тем, что узлы сети (пункты выделения каналов) связаны линейно, но последний из них соединен с первым, образуя замкнутую петлю (кольцо). В кольце возможна организация однонаправленной и двунаправленной передачи цифрового потока между узлами сети. Основное преимущество этой топологии состоит в легкости организации защиты благодаря двум оптическим входам в мультиплексорах, позволяющих создать двойное кольцо со встречными цифровыми потоками. Система защиты организуется двумя способами. Первый способ защиты

позволяет переключать "основное" кольцо на "резервное". В этом варианте блочные виртуальные контейнеры имеют доступ только к основному кольцу. В случае обрыва ВОК происходит замыкание основного и резервного колец на границах поврежденного участка. При этом приемник передатчик выходного блока мультиплексора соединяется с той его стороной, где произошел обрыв кабеля. Это приводит к образованию нового кольца. Второй способ состоит в том, что блочные виртуальные контейнеры передаются одновременно в двух противоположных направлениях по разным кольцам. Если происходит сбой в одном из колец, система управления автоматически выбирает тот же блок из другого кольца. Программы управления мультиплексорами поддерживают либо один из двух, либо оба способа защиты.

Кольцо, организованное оптическими волокнами внутри одного ВОК называется "плоским". При использовании волокон кабелей, проложенных по разным трассам между узлами сети (пунктами выделения каналов) и двунаправленной передачи цифрового потока, кольцо является "выпуклым" (рисунок 6, в).

Наибольшей надежностью обладает кольцевая топология сети с организацией выпуклых колец между узлами и двунаправленной передачей цифрового потока внутри кольца. Очевидно, что наибольшая надежность кольцевых структур достигается тогда, когда кабельные трассы кольца территориально разнесены. В зависимости от назначения ВОЛС можно организовать кольцевые структуры для магистральной и дорожной связи по параллельным железнодорожным направлениям. Если это невозможно, для повышения надежности ВОЛС можно замкнуть кабельное кольцо путем прокладки (подвески) кабеля по разные стороны железной дороги или организовать параллельный радиорелейный тракт SDH/СЦИ. На практике находят применение топология "плоского кольца", когда для замыкания кольца используются оптические волокна внутри одного кабеля.

Рисунок 7 - Типы базовых топологий цифровых сетей

Сочетания рассмотренных топологий позволяет создавать сети СЦИ с различной архитектурой. Как правило все мультиплексоры СЦИ имеют возможность оснащения различными платами оптоэлектронных интерфейсов на длинах волн 1310 и 1550 нм, выбор которых позволяет оптимизировать структуру линии в зависимости от соотношения стоимости и длин регенерационных участков.

При выборе топологии сетей необходимо также учитывать число оконечных устройств (ОУ) и устройств обработки информации (УОИ); территориальное расположение ОУ и УОИ; функциональное назначение и показатели качества сети; надежность сети; стоимость сооружения сети; условия эксплуатации; требования к массе и габаритным размерам элементов сети.

Для железнодорожных SDH/СЦИ сетей наиболее целесообразно использовать кольцевые топологии и их варианты, при этом важным является не только правильный выбор оборудования, но и оптимальное расположение узлов в каждом кольце и узлов, где будет организовано их взаимодействие. При этом должны быть обеспечены условия построения системы управления сети с кольцевыми структурами.

Кольцевание сети должно будет осуществляться исходя из следующих принципов. В случае, когда железные дороги проходят параллельно, кольцевание осуществляется с использованием поперечных направлений или с использованием инфраструктуры других ведомственных сетей, например, на опорах линий электропередачи (ЛЭП). На линейной сети связи, проложенной вдоль дороги, будут формироваться плоские кольца. Учитывая взаимное тяготение узлов, расположенных вдоль железнодорожных магистралей, плоские кольца целесообразно организовывать в пределах диспетчерского участка и отделения дороги. Выпуклые кольца большой протяженности организуются на дорожном и магистральном уровнях.

Большое значение для волоконно-оптических сетей связи имеет способ физического доступа к передающей среде - волокну, тип сетевого интерфейса. По этому признаку волоконно-оптические сети связи разделяются на пассивные и активные.

В пассивных топологиях физический доступ (ввод-вывод сигнала) осуществляется в оптической области (по оптическому сигналу) с помощью пассивных оптических элементов, таких, как оптические ответвители, разветвители, спектральные мультиплексоры-демультиплексоры, переключатели. Узел сети получает в этом случае порцию оптической энергии непосредственно из оптического волокна и вводит оптический сигнал непосредственно в оптическое волокно. Пассивный узел - это простая точка ветвления, которая может только ослабить сигнал, но не изменяет его форму и содержание. Непрерывность оптической среды в точках доступа пассивной сети не нарушается, однако возникающие при вводе-выводе потери сигнала требуют тщательного расчета его энергетического потенциала в сети. С точки зрения топологии в пассивных волоконно-оптических сетях связи используется так называемая многоточечная пассивная схема той или иной конфигурации с оптико-оптическим сетевым интерфейсом.

В активных топологиях доступ к общему цифровому потоку осуществляется в электрической области, для чего оптический сигнал в узле преобразуется в электрический при выводе, а при вводе выполняется обратное преобразование. В узлах (пунктах выделения каналов) сети нарушается непрерывность передающей среды: сетевой интерфейс при выводе оптоэлектронный, а при вводе - электронно-оптический. Активный узел может изменять или переключать цифровые потоки (каналы) и в этом отношении имеет больше функциональных возможностей по обработке сигнала, чем пассивный узел, однако при этом возрастает и вероятность искажения сигнала.

Делись добром ;)