Разработка стенда для исследования схемы синхронного RS-триггера

дипломная работа

1.2.3 Исследование работы rs-триггера с помощью программы PROTEL

Триггер называется синхронным, если у него помимо информационных входов S и R, существует управляющий вход С. Триггер будет менять свое состояние только при логической 1 на входе С.

Активным сигналом для этой схемы является логическая 1.

Табл. 6. Таблица переходов RS триггера

С

S

R

Qt+1

Примеч.

0

*

*

Qt

Хранен.

1

0

0

Qt

Хранен.

1

0

1

0

Устан. 0

1

1

0

1

Устан. 1

1

1

1

1

Запрет

Синхронный RS-триггер. RS-триггер - это триггер, который сохраняет своё предыдущее состояние при нулевых входах и меняет своё выходное состояние при подаче на один из его входов единицы. RS-триггер используется для создания сигнала с положительным и отрицательным фронтами, отдельно управляемыми посредством стробов, разнесённых во времени. Также RS-триггеры часто используются для исключения так называемого явления дребезга контактов.

Рис.22. Схема RS - триггер на элементах 2И-НЕ, собранная в программе Protel.

Рис. 23. Результаты анализа работы RS - триггера в программе PSpice AD

триггер автоматизированное проектирование инвертор

Исследование работы инвертора с помощью программы Protel

Инвертором называется прибор, схема, или система, которая создает переменное напряжение при подключении источника постоянного напряжения.

Рис. 24. Структура инвертора, построенная в программе Protel

Микросхемы на комплементарных транзисторах строятся на основе МОП транзисторов с n- и p-каналами. Один и тот же потенциал открывает транзистор с n-каналом и закрывает транзистор с p-каналом. При формировании логической единицы открыт верхний транзистор, а нижний закрыт. В результате ток через микросхему не протекает. При формировании логического нуля открыт нижний транзистор, а верхний закрыт. И в этом случае ток через микросхему не протекает. Простейший логический элемент - это инвертор. Его схема приведена на рис. 25.

Рис. 25. Реализация инвертора на транзисторах, построенная в программе Protel

Рис. 26. Результаты анализа работы инвертора в программе PSpice AD

Исследование работы логического элемента 2ИЛИ-НЕ с помощью программы Protel

2ИЛИ-НЕ -- двух входовой элемент ИЛИ с инверсией на выходе.

Рис. 27. Структура 2ИЛИ-НЕ, построенная в программе Protel

Рис. 28. Реализация 2ИЛИ-НЕ на транзисторах, построенная в программе Protel

Рис. 29. Результат анализа работы логического элемента 2ИЛИ-НЕ в программе PSpice AD

Элемент ИЛИ-НЕ дает на выходе нуль при наличии хотя бы на одном из входов единицы

Исследование работы логического элемента 2И-НЕ с помощью программы Protel

Рис. 30. Структура 2И-НЕ, построенная в программе Protel

В случае элемента 2И-НЕ один из входов можно считать информационным, а другой -- управляющим. В этом случае при единице на управляющем входе выходной сигнал будет равен проинвертированному входному сигналу, а при нуле на управляющем входе выходной сигнал будет постоянно равен единице, то есть прохождение входного сигнала будет запрещено. Элементы 2И-НЕ с выходом ОК часто используют именно в качестве управляемых буферов для работы на мультиплексированную или двунаправленную линию.

Рис. 31. Реализация 2И-НЕ на транзисторах, построенная в программе Protel

Рис. 32. Результаты анализа работы элемента 2И-НЕ в программе PSpice AD

1.2.4 Изготовление платы устройства

Платы с печатными проводниками и контактными площадками в любительской практике удобно использовать лишь тогда, когда устройство предварительно хорошо отработано. В процессе настройки приходится несколько раз демонтировать отдельные детали и устанавливать другие, а печатные контактные площадки под действием многократных тепловых и механических нагрузок, как правило, отслаиваются. Поэтому на этапе отладки схемы лучше применять монтажные платы, которые являются как бы макетом будущей печатной платы.

Пластину требуемых размеров из нефольгированного изоляционного материала (текстолит, гетинакс, фанера) обрабатывают с одной стороны мелкозернистой наждачной бумагой, обезжиривают и укрепляют необработанной стороной на деревянной дощечке толщиной 15-- 20 мм.

Сверху на пластину накладывают и в нескольких точках приклеивают лист бумаги с эскизом будущей печатной платы. В точках крепления выводов, изгиба проводников схемы, выводных контактных площадок сверлом 0,1--1,5 мм сверлят отверстия так, чтобы сверло, пройдя пластину насквозь, углубилось в дощечку на 10--12 мм. В полученные отверстия вставляют металлические штыри подходящего диаметра так, чтобы они выступали над поверхностью пластины на 5--10 мм. Можно использовать мелкие гвозди или отрезки жесткой проволоки.

Затем из луженого одножильного провода диаметром 0,3--0,5 мм изготовляют проводники платы. Для этого провод в соответствии с эскизом протягивают от штыря к штырю, обматывая каждый из них одним-двумя витками. Когда все соединения выполнены, эскиз, разрывая, удаляют пинцетом. Проводники должны быть плотно прижаты к поверхности.

После этого на участки проводников, расположенные между штырями, кисточкой осторожно наносят эпоксидный клей в таком количестве, чтобы проводники оказались приклеенными к поверхности платы. Необходимо следить за тем, чтобы клей не попал на штыри и витки провода, намотанные на них. После полного затвердевания клея штыри удаляют и готовую плату снимают с дощечки. Образовавшиеся на плате петли провода будут удобными контактными площадками для присоединения выводов радиоэлементов.

Закончив отладку схемы, отрабатывают рациональную компоновку элементов и уточняют эскиз.

Компоновка элементов на макетной плате. Работа по размещению элементов на плате значительно упрощается, если воспользоваться следующим приемом. На лист ватмана с размерами будущей платы наносят слой пластилина толщиной 2--4 мм. Этот лист в нескольких точках приклеивают к другому листу ватмана или миллиметровки.

В пластилин, слегка вдавливая выводы, устанавливают радиоэлементы и микросхемы. Необходимо при этом учитывать принципиальные особенности устройства (взаимовлияния цепей, температурные режимы элементов и т.д.), уменьшать длину соединительных проводников, не делать перемычек.

Выводы элементов предварительно изгибают соответствующим образом (формуют). Линии будущих печатных проводников прочерчивают на пластилине шилом. Перемещая элементы, находят наиболее рациональную компоновку.

Затем, поочередно снимая каждый элемент с макета, прокалывают шилом оба листа в точках будущих отверстий в плате. По нескольку проколов тонкой иглой делают вдоль будущих печатных проводников. После этого элемент устанавливают на прежнее место.

Отклеивают нижний лист, рисуют на нем соединения и обозначают места расположения элементов. Рисунок соединений переносят на фольгированную заготовку. После этого детали с макетной платы снимают. Макетная плата может быть использована несколько раз.

В качестве основы для макетирования можно применить пластину пенопласта толщиной 25--30 м. В этом случае выводы элементов формуют и вдавливают в пенопласт. Когда наиболее рациональный вариант размещения выбран, на пенопласте чертят две взаимно перпендикулярные базовые линии.

С помощью чертежного измерителя расстояния от базовых линий до контактных площадок измеряют и переносят на миллиметровую бумагу.

Отметки соединяют линиями, завершая тем самым подготовку рисунка печатной платы.

Лист миллиметровой бумаги можно сразу наложить на пластину и, устанавливая элементы, прокалывать и бумагу. После определения наилучшей компоновки рисуют на миллиметровке соединения и снимают поочередно элементы, помечая на бумаге их схемный номер.

Разметка печатной платы под некоторые микросхемы и малогабаритные элементы (миниатюрные трансформаторы, реле и др.) с торцевым расположением выводов довольно трудоемка.

Разметка упрощается, если на поверхность платы в предполагаемом месте установки нанести слой пластилина толщиной 0,5--1 мм. Слой должен быть гладким и ровным. Затем подготовляют элемент (микросхему): выводы укорачивают до одинаковой длины (10--12 мм) и подгибают так, чтобы они были перпендикулярны основанию корпуса.

Элемент (микросхему) опускают на предполагаемое место установки и вдавливают выводы в пластилин до упора в поверхность платы, затем осторожно вынимают и шилом или остро заточенным кернером намечают по оставшимся следам выводов центры будущих отверстий в плате. После разметки слой пластилина снимают и сверлят отверстия.

Этот способ удобен и при компоновке элементов на плате.

Исходя из выше сказанного, в дипломной работе рассмотрен принцип построения устройства для исследования схемы синхронного -триггера. Для реализации синхронного RS-триггера используются такие логические элементы как ИЛИ-НЕ, И-НЕ и инверторы.

Выполняя дипломную работу, можно сделать вывод, что с помощью электронной среды «Protel» эффективно моделируются и конструируются различные цифровые устройства на логических элементах.

С помощью данной среды можно моделировать схемы до начала их изготовления, так что можно с самого начала быть уверенным в адекватности их архитектуры. Она детально показывает, из каких элементов состоит схема и как она функционирует, поэтому разработчики могут использовать ее в качестве эскиза или чертежа создаваемого устройства. С помощью готовой модели недостатки проекта легко обнаружить на стадии, когда их исправление не требует еще значительных затрат.

Делись добром ;)