Разработка управляющей микро-ЭВМ на базе микропроцессора Z80

курсовая работа

3.2 Модуль ПЗУ

Микросхемы программируемых ПЗУ по принципу построения и функционирования аналогичны масочным ПЗУ, но имеют существенное отличие в том, что допускают программирование на месте своего применения пользователем. Операция программирования заключается в разрушении (пережигании) части плавких перемычек на поверхности кристалла импульсами тока амплитудой 30... 50 мА. Технические средства для выполнения этой операции достаточно просты и могут быть построены самим пользователем. Это обстоятельство в сочетании с низкой стоимостью и доступностью микросхем ПЗУ обусловило их широкое распространение в радиолюбительской практике.

В данном курсовом проекте рассматривается применение микросхемы ПЗУ К541РТ2. Микросхемы ПЗУ серии К541 выполнены по технологии ИИЛ.

Основные характеристики микросхемы представлены в таблице 5.

Таблица 5 - Характеристики БИС К541РТ2

Тип микросхемы

Емкость, бит

Рпот, мВт

Тип выхода

770

К541РТ2

2КЧ8

ТТЛ-ОК

Матрица до программирования, т. е. в исходном состоянии, содержит однородный массив проводящих перемычек, соединяющих строки и столбцы во всех точках их пересечений. Перемычки устанавливают из поликристаллического кремния. Перемычка в матрице выполняет роль ЭП. Наличие перемычки кодируют логической 1, если усилитель считывания является повторителем, и логическим 0, если усилитель считывания - инвертор. Следовательно, микросхема ПЗУ в исходном состоянии перед программированием в зависимости от характеристики выходного усилителя может иметь заполнение матрицы либо логическим 0, либо логической 1.

Цоколевка данной ПЗУ представлена на рисунке 7

Размещено на http://www.allbest.ru/

"right">38

Рисунок 7 - Микросхема ПЗУ К541РТ2

Назначение выводов ПЗУ К541РТ2 представлено в таблице 6.

Таблица 6 - Описание выводов БИС ПЗУ К541РТ2

Обозначение вывода

Номер контакта

Назначение вывода,

Состояние

D (0-7); (-)

17; 16; 15; 14; 13; 11; 10; 9;

Выход данных

0,1

А (0-10); (а)

8; 7; 6; 5; 4; 3; 2; 1; 23; 22; 19

Входы данных с локальной шины МП

0,1

CS (1-3); (ВМ)

18

Выбор микросхемы; L-уровень сигнала подключает ПЗУ к системной шине

0,1

UCC; (UНП)

26

Напряжение питания (+5 В)

1

GND (Общ)

7

Общий вывод микросхемы

0

Структурная схема микропроцессора представлена на рисунке 8.

Рисунок 8 - Структурная схема БИС К541РТ2.

Работа с подобными микросхемами должна осуществляться следующим образом. Положим, мы хотим записать число 145D = 10010001В в ячейку с адресом 84D = 54Н = 1010100В. Для этого МК должен установить записываемое число на линиях данных D0-D7 микросхемы (D0=D4=D7=1, D1=D2-D3=D5=D6=0), а адрес ячейки - на адресных линиях (А2=А4=А6=1, А0=А1=АЗ=А5=0; А7, А8 и последующие старшие адреса вплоть до А10 для микросхем объемом 2К* 8 или до А12 для микросхем 8К*8 также должны быть установлены в 0). Установив адресную информацию и данные, МК одновременно с этим или чуть позже должен установить 0 на входе WE микросхемы (будет запись) и 0 на СЕ (знак того, что мы обращаемся именно к этой микросхеме). Как только после этого на входе ОЕ микросхемы памяти МК установит 0, осуществится запись числа 145 в ее 84-ю ячейку.

Соответственно, если мы хотим прочитать данные из все той же, к примеру, 84-й ячейки, мы должны, как и в предыдущем случае, установить адрес ячейки на адресных линиях, и одновременно с этим или чуть позже установить 1 на входе WE микросхемы (будет чтение) и 0 на СЕ (знак того, что мы обращаемся именно к этой микросхеме). Как только после этого на входе ОЕ микросхемы памяти МК установит 0, осуществится чтение числа из выбранной ячейки, и оно появится на линиях данных D0-D7 микросхемы памяти. Сказанное поясняется временными диаграммами, приведенными на рисунке 9.

Рисунок 9 - Диаграммы чтения и записи микросхем памяти

Делись добром ;)