Блок формирования сигналов вспомогательного гетеродина

дипломная работа

3.3.2 Общие свойства смесителей

В идеальном смесителе в спектре выходного RF-сигнала присутствуют только компоненты первого порядка с суммарной и разностной частотами fLO±fIF. Именно такой смеситель мы стремимся получить, но это невозможно ввиду принципа работы реальных смесителей. Рассмотрим, как функционирует реальный смеситель.

Схема небалансного См ВЧ-диапазона представляет собой соединенные в кольцо источники квазигармонических напряжений uRF(t) и uLO(t), диод и нагрузку. Вольт-амперная характеристика диода описывается экспоненциальной функцией:

i(e)=Sexp(б e),

где S - крутизна, e- напряжение на диоде, б - множитель нелинейности.

Если функцию представить в виде ряда:

i(e)=S[1+ бe+…+(1/n!) бnen+…],

а напряжение как сумму синусоидальных составляющих, у которых частоты fLO и fRF.

То после тригонометрических преобразований окажется, что в спектре тока диода присутствуют гармоники входных сигналов с кратными частотами и составляющие с комбинационными частотами:

fIF=| ±mfRF ±nfLO | ,

где m и n - целые числа.

Также в токе См имеют место паразитные комбинационные компоненты высокого порядка, если в сигнале на выходе имеются гармонические составляющие с близкими частотами.

Мощность каждой компоненты зависит от схемы смесителя и нелинейно связана с амплитудами входных сигналов.

Чтобы избавится от нежелательных паразитных компонент в исследуемой схеме, после смесителя ставится полосно-пропускающий фильтр, выделяющий компоненту первого порядка с суммарной частотой. Тем самым мы приближаемся к желаемому идеальному смесителю, о котором говорилось ранее.

Делись добром ;)