Расчет установившихся режимов линейных электрических цепей

курсовая работа

1.3 Экспериментальная часть

1) Измеряем Е1 и Е2 , показания заносим в таблицу 1.

Параметры исследуемой цепи

Таблица 1

Значения ЭДС, В

Сопротивления резисторов, Ом

Сопротивления амперметров, Ом

Е1

Е2

R1

R2

R3

R4

R5

R6

RA1

RA2

RA3

10

9

123

80

50

80

80

20

2

2

1

При замкнутом ключе S измеряем токи от действия обеих ЭДС, полученные значения заносим в таблицу 2 и 4.

Сравнение значений токов, полученных расчётами и в опыте

Таблица 2

Токи в ветвях, мА

Способ определения

I1

I2

I3

I4

I5

39,5

-1,5

38

Опытным путём

39,3

-1,38

38

91,1

89,7

Методом контурных токов

39,6

-1,18

37,5

90,9

89,8

Методом узловых потенциалов

38,3

Методом эквивалентного генератора

2) Принимаем потенциал одного из узлов схемы (узла номер 3) равным нулю, измеряем потенциалы указанных точек, заносим их в таблицу 3

Сравнение значений потенциалов, полученных расчетом и в опыте

Таблица 3

Потенциалы точек цепи, В

Способ определения

ц1

ц2

ц3

ц4

ц5

ц6

1,8

1,9

0

-7,2

-3,1

6,85

Опытным путём

1,82

1,91

0

Методом узловых потенциалов

3) Измеряем и заносим в таблицу 4 значения токов от действия Е1, Е2 .

Проверка принципа наложения

Таблица 4

включены ЭДС, В

Токи, мА

опыт

расчёт

Е1

I1

I2

I3

преобразованием цепи

I1

I2

I3

42

-14,5

27,5

41,9

-14,3

27,6

Е2

I1

I2

I3

преобразованием цепи

I1

I2

I3

-2,5

13

10,5

-2,6

13

10,4

Е1, Е2

I1

I2

I3

методом наложения

I1

I2

I3

39,5

-1,5

38

39,3

-1,3

38

4) Включаем в схему Е1 и Е2, измеряем ток I3 при R3=0, затем размыкаем ключ S и измеряем напряжение между точками 2 и 3. полученные значения заносим в таблицу 5

Параметры эквивалентного генератора

Таблица 5

Напряжение холостого хода

Eг=U23Х,X, В

Ток короткого замыкания

IЗ К.З, А

Сопротивление

RГ , Ом

Способ определения

4,5

0,067

67,1

Опыт

4,45

66,3

Расчёт

Потенциальная диаграмма

Потенциалы всех узлов, обозначенных на схеме:

Рис. 6 Потенциальная диаграмма для внешнего контура схемы (узлы 3-4-1-2-6-5-3)

1.4 Расчётная часть

Рис. 7 Эквивалентная схема стенда, используемая для проведения расчетов

Составим уравнения по законам Кирхгофа:

-по первому закону Кирхгофа:

I1+I2=I3 39,5-1,5=38 (мА)

-по второму закону Кирхгофа:

Метод контурных токов

Выберем три независимых контура. Обозначим контурные токи: I11, I22, I33, выбрав направление обхода произвольно.

Составим систему уравнений для определения контурных токов:

Для данной схемы при выбранных направлениях обхода контуров их параметры выражаются следующим образом:

Рис. 8 Метод контурных токов

Решив полученную систему уравнений, найдем контурные токи:

Выразим токи ветвей через контурные:

Метод узловых потенциалов

Рис. 9 Метод узловых потенциалов

Запишем систему уравнений для потенциалов узлов 1 и 2:

По исходным данным вычислим значения задающих токов и проводимостей ветвей:

Решив полученную систему уравнений, получим потенциалы узлов:

Исходя из потенциалов узлов и 2-го закона Кирхгофа, найдем токи ветвей:

Расчет токов методом наложения

Метод основан на предположении о линейности цепи, т.е. о том, что все источники в схеме действуют независимо и токи в ветвях схемы можно представить как алгебраическую сумму токов каждого из источников.

Преобразуем исходную схему, исключив второй источник напряжения.

Рис. 10 Преобразование схемы для метода наложения.

Рассчитаем вспомогательные сопротивления (между узлами схемы):

Теперь рассчитаем токи в ветвях схемы с учетом принятых для них направлений.

Проведем аналогичный расчет, исключив первый источник.

Рис. 11 Преобразование схемы для метода наложения

Токи и межузловые сопротивления в данной схеме находятся следующим образом:

Найдем теперь токи I1, I2, I3.

+

Метод эквивалентного генератора

Метод эквивалентного генератора основан на том, что вся схема, подключенная к какой-нибудь одной ее ветви, ток в которой нужно найти, заменяется эквивалентным генератором с ЭДС и внутренним сопротивлением такими, что ток в этой ветви не изменяется по сравнению с исходной схемой.

Рис. 12 Преобразование схемы для метода эквивалентного генератора

Для заданной схемы ЭДС эквивалентного генератора, рассчитанная с использованием метода узловых потенциалов,

.

Внутреннее сопротивление эквивалентного генератора найдем по формуле:

Ток I3 рассчитаем по закону Ома:

.

Проверка баланса мощностей в схеме

Баланс мощностей в схеме определяется следующими выражениями:

Погрешность вычислений найдем по формуле:

Для заданной схемы баланс мощностей запишется в виде:

Проверка баланса мощностей в схеме

Таблица 6

Способ определения

Мощность источников, Вт

Мощность потребителей, Вт

Относительная погрешность, %

Метод узловых потенциалов

1,2043

1,204

<0.02

Метод контурных токов

1,2009

1,2009

0

Метод наложения

1,2009

1,2009

0

2. Исследование и расчет цепей синусоидального тока

2.1 Цель работы

1. Экспериментальное и расчетное определение эквивалентных параметров цепей переменного тока, состоящих из различных соединений активных, реактивных и индуктивно связанных элементов.

2. Применение символического метода расчета цепей синусоидального тока.

3. Расчет цепей с взаимной индукцией

4. Проверка баланса мощностей

5. Исследование резонансных явлений в электрических цепях

6. Построение векторных топографических диаграмм.

2.2 Теоретические сведения

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону:

,

где - максимальное значение или амплитуда тока;

- угловая частота

- полная фаза колебания;

- начальная фаза.

Угловая частота , частота и период T связаны соотношением:

.

Проекция вращающегося против часовой стрелки с постоянной угловой скоростью вектора на вертикальную ось изменяется во времени по синусоидальному закону. Поэтому любая синусоидальная функция (ток, напряжение, ЭДС) может быть изображена вектором.

При проведении расчета очень удобным оказывается рассмотрение вращающегося вектора на комплексной плоскости. В этом случае вектор можно представить как комплексную амплитуду тока , а сам синусоидально изменяющийся ток I - как мнимую часть произведения комплексной амплитуды на :

.

Тогда при t=0 можно записать:

.

На практике широкое распространение получил символический метод расчета цепей синусоидального тока.

Сущность данного метода состоит в том, что при синусоидальном токе можно перейти от дифференциальных уравнений, составленных для мгновенных значений, к алгебраическим, составленным относительно комплексов амплитудных значений тока , напряжения , и ЭДС либо их действующих значений , и . Например, если

,

то комплексное действующее значение напряжения

,

где .

Рис. 13 Схема цепи с реактивными элементами

Аналогично осуществляется запись комплексов действующих значений величин ЭДС и тока. Например, для схемы (рис. 13) уравнение для мгновенных значений напряжений, составленное по второму закону Кирхгофа, запишется следующим образом:

, или .

Переходя к комплексным действующим значениям напряжений, получим:

,

где R - активное сопротивление цепи,

- комплексное индуктивное сопротивление цепи,

- комплексное емкостное сопротивление цепи.

Множитель свидетельствует о том, что вектор напряжения на индуктивности L опережает вектор тока на . Множитель свидетельствует о том, что вектор напряжения на емкости С отстает от вектора тока на . На активном сопротивлении R векторы напряжения и тока совпадают по направлению.

Величина называется комплексным сопротивлением цепи (рис. 13), а - ее комплексной проводимостью, где G и B - активная и реактивная составляющие проводимости цепи.

Комплексные числа записываются в одной из следующих форм:

алгебраическая - ;

показательная - ;

тригонометрическая - ;

полярная - .

Геометрически любому комплексному числу можно сопоставить в соответствие точку комплексной плоскости с координатами x=a, y=jb или радиус-вектор длиной A единиц, проведенный из начала координат в точку A и расположенный под углом ? к оси абсцисс. Из рисунка очевидны формулы перехода из одной формы записи комплексного числа к другой:

Алгебраическая форма применяется при сложении и вычитании комплексных чисел, а показательная - при умножении, делении, возведении в степень и извлечении корня. Умножении числа на мнимую единицу сводится к повороту вектора на угол 900 против часовой стрелки, умножение на - к повороту на угол 900 по часовой стрелке, а умножение на -I соответствует повороту на .

Полное комплексное сопротивление цепи и ее участков (R, L и С) геометрически связаны треугольником сопротивлений:

а) если , то

б) если , то , где

Расчет электрической цепи в комплексной форме требует записи одного и того же комплексного числа в алгебраической и показательной формах.

Рассмотрим несколько примеров.

Векторные диаграммы

Представление комплексных величин на комплексной плоскости векторами дает возможность строить векторные диаграммы токов и напряжений в цепях синусоидального тока. Топографическая диаграмма позволяет проверить правильность расчетов и дает наглядное представление о фазовых сдвигах между напряжениями и токами.

Перед построением диаграммы предварительно выбираются положительное направление тока в цепи, а так же масштабы напряжений и токов на комплексной плоскости.

Для токов обычно строится лучевая диаграмма, когда токи откладываются из одной точки.

Для напряжений обычно строится топографическая диаграмма, на ней напряжения элементов откладываются в той же последовательности, как эти элементы расположены на схеме. Обход контура выбирают против положительного направления тока. На комплексной плоскости стрелка указывает в сторону большего потенциала. Сложение всех векторов напряжений дает входное напряжение цепи.

Цепи с индуктивно связанными элементами

В любой цепи переменного тока между катушками индуктивности существует взаимодействие, которое характеризуется величиной взаимной индуктивности M.

Если токи в катушках протекают в одном направлении относительно зажимов, то магнитный поток самоиндукции катушки совпадает с магнитным потоком взаимоиндукции. Такое включение катушек называется согласным. В этом случае напряжение взаимоиндукции прибавляется к напряжениям на соответствующих индуктивностях.

В противном случае включение катушек встречное. Напряжение взаимоиндукции вычитается из соответствующих напряжений на индуктивностях.

Начальный зажим на схемах помечается точкой.

Взаимная индуктивность рассчитывается по формуле:

,

где M - взаимная индуктивность, Гн;

Lс -индуктивность цепи при согласном включении, Гн;

Lв - индуктивность цепи при встречном включении, Гн.

Магнитная связь катушек характеризуется коэффициентом связи, который рассчитывается по формуле:

,

где K - коэффициент связи;

L1 - индуктивность первой катушки, Гн;

L2 - индуктивность второй катушки, Гн.

Резонанс в электрических цепях

Признаком резонанса в электрической цепи, содержащей индуктивности и емкости, является совпадение по фазе напряжения и тока на ее входе.

При последовательном соединении индуктивности и емкости или при последовательном соединении участков, содержащих индуктивность и емкость, возможен резонанс напряжений.

При резонансе напряжений индуктивное сопротивление цепи компенсируется емкостным, в результате входные реактивные сопротивление и мощность равны нулю, напряжения на реактивных элементах могут значительно превышать входное.

При параллельном соединении индуктивности и емкости или при параллельном соединении участков, содержащих индуктивность и емкость, возможен резонанс токов.

При резонансе токов индуктивная проводимость цепи компенсируется емкостной, в результате реактивная проводимость и реактивная мощность на входе цепи равна нулю, токи в реактивных элементах могут значительно превышать входной ток.

Частота, при которой наблюдается резонанс, называется резонансной. При исследовании резонансных режимов обычно определяется резонансная частота, значения индуктивности или емкости, при которых на заданной частоте возникает резонанс, а также рассчитываются частотные характеристики - зависимости токов, напряжений, сопротивлений, проводимостей от частоты.

Делись добром ;)