Розрахунок трьохфазного мостового випрямляча

курсовая работа

1.2 Система керування

Система керування (СУ) випрямляча призначена для формування керуючих імпульсів необхідної амплітуди й тривалості; для твердої синхронізації їх з напівперіодами фазних напруг; для розподілу керуючих імпульсів по трьох каналах, відповідно до числа фаз випрямляча; для стабілізації вихідної напруги шляхом автоматичної зміни кута керування ? при впливі дестабілізуючих факторів.

Принципова схема, шестиканальної системи керування, у якій реалізований метод ШІМ-1, наведена на рис.1.6. Схема побудована при використанні операційних підсилювачів загального призначення.

Синусоїдальна напруга фази А, що знімається c додаткової (синхронізуючої) обмотки силового трансформатора TV1, надходить на вхід синхронізатора, зібраного за схемою симетричного двостороннього обмежника напруги на діодах VD1, VD2. Через нелінійність вольтамперных характеристик діодів на виході синхронізатора формується трапецеїдальна напруга з амплітудою Uогр, рівної спаданню напруги на відкритому діоді й тривалістю фронту ?tф . Прямий струм через діоди обмежується резисторами R1, R2.

З виходу обмежника трапецеїдальний сигнал надходить на вхід операційного підсилювача DA1 з метою збільшення крутості фронтів і наданні напрузі прямокутної форми з амплітудою Uп .

Дана напруга призначена керування польовим транзистором VТ1. Для того щоб час відкритого стану транзистора було багато менше періоду СУ включає RC- ланцюжок, що складається з C1 і R3.

Під час відкритого стану транзистора VТ1 відбувається заряджання конденсатора С2 до вихідної напруги підсилювача зворотного звязка (ПЗЗ), зібраного на мікросхемі DA4.

Розряджається конденсатор постійним струмом. Джерело струму складається з ОУ DA2, резисторів R4, R5, R6 і транзистора VТ2.

Напруга конденсатора С2 надходить на вхід, що інвертує, компаратора DA3 і рівняється з порівняльним значенням. Доти поки на конденсаторі буде напруга на виході компаратора буде 0. Дана напруга відображає кут регулювання.

Позитивний імпульс вихідної напруги компаратора через обмежуючий резистор R7 надходить у ланцюг бази транзистора VТ3, що виконує функцію вихідного підсилювача потужності. При відмиканні транзистора в його колекторному ланцюзі протікає імпульс керуючого струму з амплітудою Iу0 , під дією якого світлодіод оптрона випромінює світловий імпульс і переводить силовий тиристор фази А у включений стан. Для обмеження амплітуди керуючого струмі включається резистор R9. В інтервалі часу, коли вихідна напруга компаратора негативно, транзистор VT3 закритий.

Стабілізація вихідної напруги здійснюється ланцюгом зворотного звязка, що складає з вимірювального елемента, джерела опорного (еталонного) напружена й підсилювача зворотного звязка. Функцію вимірювального елемента в схемі виконує дільник напруги R14, R15, R16, підключений до вихідних клем випрямляча. Частина вихідної напруги, що знімається з нижнього плеча дільника, рівняється з еталонною напругою опорного стабілітрона VD3 .

Необхідний струм стабілізації встановлюється резистором R17. Різниця між вихідною й еталонною напругою підсилюється підсилювачем зворотного звязка (мікросхема DA4) надходить через транзистор VТ1 на конденсатор С2, а також на входи компараторів каналів формування імпульсів фаз B і С.

Необхідний коефіцієнт підсилення ПЗЗ установлюється резисторами R11, R12. При зміні напруги на навантаженні під дією дестабілізуючих факторів, наприклад при його збільшенні, напруга на не вході, що інвертує, ПЗЗ зростає. Це приведе до збільшення напруги на його виході, внаслідок чого конденсатор С2 буде довше розряджатися, тобто кут ? буде зростати. У результаті вихідна напруга зменшиться майже до первісної. При зменшенні напруги на навантаженні (наприклад, внаслідок зменшення напруги в мережі або збільшення струму навантаження) напруга на виході ПЗЗ зростає й кут керування ? зменшується.

Рис.1.6.

Делись добром ;)