Сетевые источники питания

отчет по практике

2.2 Микроконтроллер PIC16C84. Краткое описание

PIC16C84 относится к семейству КМОП микроконтроллеров. Отличается тем, что имеет внутреннее 1K x 14 бит EEPROM для программ, 8-битовые данные и 64байт EEPROM памяти данных. При этом отличаются низкой стоимостью и высокой производительностью. Все команды состоят из одного слова (14 бит шириной) и исполняются за один цикл (400 нс при 10 МГц), кроме команд перехода, которые выполняются за два цикла (800 нс). PIC16C84 имеет прерывание, срабатывающее от четырех источников, и восьмиуровневый аппаратный стек.

Периферия включает в себя 8-битный таймер/счетчик с 8-битным программируемым предварительным делителем (фактически 16 - битный таймер) и13 линий двунаправленного ввода/вывода. Высокая нагрузочная способность (25мА макс. втекающий ток, 20 мА макс. вытекающий ток) линий ввода/вывода упрощают внешние драйверы и, тем самым, уменьшается общая стоимость системы. Разработки на базе контроллеров PIC16C84 поддерживается ассемблером, программным симулятором, внутрисхемным эмулятором и программатором.

Серия PIC16C84 подходит для широкого спектра приложений от схем высокоскоростного управления автомобильными и электрическими двигателями до экономичных удаленных приемопередатчиков, показывающих приборов и связных процессоров. Наличие ПЗУ позволяет подстраивать параметры в прикладных программах (коды передатчика, скорости двигателя, частоты приемника и т.д.).

Малые размеры корпусов, как для обычного, так и для поверхностного монтажа, делает эту серию микроконтроллеров пригодной для портативных приложений. Низкая цена, экономичность, быстродействие, простота использования и гибкость ввода/вывода делает PIC16C84 привлекательным даже в тех областях, где ранее не применялись микроконтроллеры. Например, таймеры, замена жесткой логики в больших системах, сопроцессоры.

Следует добавить, что встроенный автомат программирования EEPROM кристалла PIC16C84 позволяет легко подстраивать программу и данные под конкретные требования даже после завершения ассемблирования и тестирования. Эта возможность может быть использована как для тиражирования, так и для занесения калибровочных данных уже после окончательного тестирования.[1]

Обзор характеристик:

- только 35 простых команд;

- все команды выполняются за один цикл(400ns), кроме команд перехода -2 цикла;

- рабочая частота 0 Гц ... 10 МГц (min 400 нс цикл команды)

- 14 - битовые команды;

- 8 - битовые данные;

- 1024 х 14 электрически перепрограммируемой программной памяти на кристалле (EEPROM);

- 36 х 8 регистров общего использования;

- 15 специальных аппаратных регистров SFR;

- 64 x 8 электрически перепрограммируемой EEPROM памяти для данных;

- восьмиуровневый аппаратный стек;

- прямая, косвенная и относительная адресация данных и команд;

- четыре источника прерывания:

а) внешний вход -- INT

б) переполнение таймера -- RTCC

в) прерывание при изменении сигналов на линиях порта -- B

г) по завершению записи данных в память -- EEPROM

Периферия и Ввод/Вывод

- 13 линий ввода-вывода с индивидуальной настройкой;

- втекающий/вытекающий ток для управления светодиодами

. макс втекающий ток - 25 мА

. макс вытекающий ток - 20 мА

- 8 - битный таймер/счетчик RTCC с 8-битным программируемым предварительным делителем;

- автоматический сброс при включении;

- таймер включения при сбросе;

- таймер запуска генератора;

- Watchdog таймер WDT с собственным встроенным генератором, обеспечивающим повышенную надежность;

- EEPROM бит секретности для защиты кода;

- экономичный режим SLEEP;

- выбираемые пользователем биты для установки режима возбуждения встроенного генератора:

- RC генератор : RC

- обычный кварцевый резонатор : XT

- высокочастотный кварцевый резонатор : HS

- экономичный низкочастотный кристалл : LP

- встроенное устройство программирования EEPROM памяти программ и данных; используются только две ножки.

КМОП технология:

- экономичная высокоскоростная КМОП EPROM технология;

- статический принцип в архитектуре;

- широкий диапазон напряжений питания и температур:

. коммерческий: 2.0 ... 6.0 В, 0...+70С

. промышленный: 2.0 ... 6.0 В, -40...+70С

. автомобильный: 2.0 ... 6.0 В, -40...+125С

- низкое потребление

. 3 мА типично для 5В, 4МГц

. 50 мкА типично для 2В, 32КГц

. 26 мкА типично для SLEEP режима при 2В.

Cтруктура PIC16C84:

Архитектура основана на концепции раздельных шин и областей памяти для данных и для команд (Гарвардская архитектура). Шина данных и память данных (ОЗУ) - имеют ширину 8 бит, а программная шина и программная память (ПЗУ) имеют ширину 14 бит. Такая концепция обеспечивает простую, но мощную систему команд, разработанную так, что битовые, байтовые и регистровые операции работают с высокой скоростью и с перекрытием по времени выборок команд и циклов выполнения. 14- битовая ширина программной памяти обеспечивает выборку 14-битовой команды в один цикл. Двухступенчатый конвейер обеспечивает одновременную выборку и исполнение команды. Все команды выполняются за один цикл, исключая команды переходов. В PIC16C84 программная память объемом 1К х 14 расположена внутри кристалла. Исполняемая программа может находиться только во встроенном ПЗУ.

Tипы корпусов и исполнений

Обозначения корпусов для кристаллов PIC16C8x. Тип корпуса указывается в Маркировке при заказе микросхем. Корпуса бывают только с 18 Выводами.

PDIP - Обычный пластмассовый двухрядный корпус. Используется для OTP EPROM версий кристаллов.

SOIC - Малогабаритный DIP корпус для монтажа на поверхность

Исполнения микросхем бывают трех типов: комерческие, для промышлености и для автомобильной электроники. Основное их отличие в температурном диапазоне и рабочем напряжении.

Коммерческое исполнение:

Рабочая температура 0 ... +70 C

Рабочее напряжение 3.0 ... 5.5 В

Исполнение для промышленности:

Рабочая температура -40 .... +85 C

Рабочее напряжение 3.0 ... 5.5 В

Исполнение для автомобилей:

Рабочая температура -40 ... +125 C

Рабочее напряжение 3.0 ... 5.5 В

Mаркировка при заказе:

Обозначение микросхем складывается из следующих полей:

<Фирм.номер>-<Частота ген.> <Темп.диапазон> /<Корпус> <Примеч>

<Фирм.номер бывает>: PIC16C84 - Vdd range 4...6 V

PIC16LC84 Vdd range 2...6 V

<Частота генератора>: 04 ---> 4 mHz

10 ---> 10mHz

Температурный диапазон бывает:

- от 0С до +70С

I от-40С до +85С

E от-40С до +125С

Корпус обозначается:

P - обычный пластмассовый DIP

SO -300 mil SOIC

ПРИМЕРЫ:

PIC16C84-04/Pxxx 4 mHz, коммерческое исполнение в PDIP корпусе, норм.диапазон Vdd, масочное ПЗУ с программой xxx

PIC16LC84-04I/SO 4 mHz, исполнение для промышленности, расширенный диапазон питания, корпус=SOIC

PIC16C84-10E/P исполнение для автомобилей, 10 mHz, PDIP, норм. питание

Максимальные значения электрических параметров

Выход параметров за данные пределы может привести к повреждению микросхемы. Работа кристалла на предельно допустимых значениях в течение длительного времени повлияет на его надежность.

Примечания:

1. Полная рассеиваемая мощность не должна превышать 800 мВт для каждого корпуса. Рассеиваемая мощность вычисляется по следующей формуле:

2. Понижение напряжения на ножке /MCLR ниже Vss(земля) вызывает большие токи, более 80 мА, и может привести к повреждению этой линии. Поэтому, рекомендуется подавать сигналы на ножку /MCLR через ограничивающий резистор 50-100 Ом.[1]

Обзор регистров и ОЗУ:

Все программные объекты, с которыми может работать PIC, представляют собой физические регистры. Чтобы понять, как работает PIC, нужно разобраться с тем, какие регистры у него существуют и как с каждым из них работать. Hачнем с набора операционных регистров. Этот набор состоит из регистра косвенной адресации (f0), регистра таймера/счетчика (f1), программного счетчика (f2), регистра слова состояния (f3), регистра выбора (f4) и регистров ввода/вывода (f5,f6).

Эти регистры представляют основную часть программно-доступных объектов микроконтроллера.

f0...РЕГИСТР КОСВЕHHОЙ АДРЕСАЦИИ IND0: Регистр косвенной адресации f0 физически не существует. Он использует регистр выбора f4 для косвенной выборки одного из 64 возможных регистров. Любая команда, использующая f0, на самом деле обращается к регистру данных, на который указывает f4.

f1...РЕГИСТР ТАЙМЕРА/СЧЕТЧИКА TMR0: Регистр таймера/счетчика TMR0 может быть записан и считан как и любой другой регистр. TMR0 может увеличиваться по внешнему сигналу, подаваемому на вывод RTCC, или по внутренней частоте, соответствующей частоте команд.

Основное применение таймера/счетчика - подсчет числа внешних событий и измерение времени. Сигнал от внешнего или внутреннего источника также может быть предварительно поделен при помощи встроенного в PIC программируемого делителя.

f2...ПРОГРАММHЫЙ СЧЕТЧИК PCL: Программный счетчик (PC) используется для генерации последовательности адресов ячеек ПЗУ программы, содержащих 14-разрядные команды.

Ширина программного счетчика - 13 бит. Младший байт программного счетчика (PCL) доступен для чтения и записи и находится в регистре 02h. Старший байт программного счетчика (PCH) не может быть прямым образом прочитан или записан. Старший байт программного счетчика может быть записан через PCLATH регистр, адрес которого 0Ah. В зависимости от того, загружается ли в программный счетчик новое значение во время выполнения команд CALL, GOTO, или в младший байт программного счетчика (PCL) производится запись, - старшие биты программного счетчика загружаются из PCLATH разными способами

f3...РЕГИСТР СЛОВА СОСТОЯHИЯ STATUS: Регистр слова состояния похож на регистр PSW, существующий в большинстве микропроцессоров. В нем находятся бит переноса, десятичного переноса и нуля, а также биты режима включения и биты страничной адресации.

f4...РЕГИСТР ВЫБОРА FSR: Как было уже сказано, регистр выбора FSR используется вместе с регистром косвенной адресации f0 для косвенной выборки одного из 64 возможных регистров. Физически задействовано 36 регистров ОЗУ пользователя, расположенных по адресам 0Ch-2Fh и 15 служебных регистров, расположенных по различным адресам.

f5, f6...РЕГИСТРЫ ВВОДА/ВЫВОДА PORTA, PORTB Регистры f5 и f6 соответствуют двум портам ввода/вывода, имеющимся у PIC16C84.

Порт A имеет 5 разрядов PA4-PA0, которые могут быть индивидуально запрограммированы как входы или выходы при помощи регистра TRISA, имеющего адрес 85h. Линии PA<3:0> двунаправленные, а линия PA4 -выход с открытым стоком. Адрес регистра порта А - 05h. Относящийся к порту А управляющий регистр TRISA расположен на первой странице регистров по адресу 85h. TRISA<4:0> - это регистр шириной 5 бит. Если бит управляющего TRISA регистра имеет значение единица, то соответствующая линия будет устанавливаться на ввод. Ноль переключает линию на вывод и одновременно выводит на нее содержимое соответствующего регистра защелки.

Порт В - это двунаправленный порт, шириной в восемь бит (адрес регистра 06h). Относящийся к порту В управляющий регистр TRISB расположен на первой странице регистров по адресу 86h. Если бит управляющего TRISB регистра имеет значение единица, то соответствующая линия будет устанавливаться на ввод. Ноль переключает линию на вывод и одновременно выводит на нее содержимое соответствующего регистра защелки. У каждой ножки порта В имеется небольшая активная нагрузка (около 100мкА) на линию питания. Она автоматически отключается, если эта ножка запрограммирована как вывод. Более того, управляющий бит RBPU OPTION<7> может отключить (RBPU=1) все нагрузки. Сброс при включении питания также отключает все нагрузки.

Порт B имеет 8 разрядов PB7-PB0 и программируется при помощи регистра TRISB, имеющего адрес 86h.

Четыре линии порта В (PB<7:4>) имеют способность вызвать прерывание при изменении значения сигнала на любой из них. Если эти линии настроены на ввод, то они опрашиваются и защелкиваются в цикле чтения Q1. Новая величина входного сигнала сравнивается со старой в каждом командном цикле. При несовпадении значения сигнала на ножке и в защелке, генерируется высокий уровень. Выходы детекторов "несовпадений" PB4,PB5,PB6,PB7 объединяются по ИЛИ и генерируют прерывание RBIF (запоминаемое в INTCON<0>). Любая линия, настроенная как вывод, не участвует в этом сравнении. Прерывание может вывести кристалл из режима SLEEP. В подпрограмме обработки прерывания следует сбросить запрос прерывания одним из следующих способов:

1) Запретить прерывания при помощи обнуления бита RBIE INTCON<3>.

2) Прочитать порт В. Это завершит состояние сравнения.

3) Обнулить бит RBIF INTCON<0>.

Прерывание по несовпадению и программно устанавливаемые внутренние активные нагрузки на этих четырех линиях могут обеспечить простой интерфейс например с клавиатурой, с выходом из режима SLEEP по нажатию клавиш. Ножка RB0 совмещена с входом внешнего прерывания INT

Задание 1 в разряде регистра TRIS программирует соответствующий разряд порта как вход. При чтении порта считывается непосредственное состояние вывода, при записи в порт запись происходит в буферный регистр.

Проблемы при организации двунаправленных портов:

-Некоторые команды внутренне выполняются как чтение+запись. Например, команды BCF и BSF считывают порт целиком, модифицируют один бит и выводят результат обратно. Здесь необходима осторожность. Например, команда BSF для бита 5 регистра f6 (порт В) сначала считает все восемь бит. Затем выполняются действия над битом 5 и новое значение байта целиком записывается в выходные защелки. Если другой бит регистра f6 использует я в качестве двунаправленного ввода/вывода (скажем бит 0) и в данный момент он определен как входной, входной сигнал на этой ножке будет считан и записан обратно в выходную защелку этой-же ножки, затирая ее предыдущее состояние.

До тех пор пока эта ножка остается в режиме ввода, никаких проблем не возникает. Однако, если позднее линия 0 переключится в режим вывода, ее состояние будет неопределенным.

На ножку, работающую в режиме вывода, не должны "наваливаться" внешние источники токов("монтажное И", "монтажное ИЛИ"). Результирующие большие токи могут повредить кристалл.

Последовательное обращение к портам ввода/вывода:

Запись в порт вывода происходит в конце командного цикла. Но при чтении, данные должны быть стабильны в начале командного цикла. Будьте внимательны в операциях чтения, следующих сразу за записью в тот же порт. Здесь надо учитывать инерционность установления напряжения на выводах. Может потребоваться программная задержка, чтобы напряжение на ножке (зависит от нагрузки) успело стабилизироваться до начала исполнения следующей команды чтения

f8, f9...РЕГИСТРЫ ЭППЗУ EEDATA, EEADR: PIC16C84 имеет встроенное электрически перепрограммируемое ПЗУ размером 64 байта, которое может быть считано и записано при помощи регистра данных EEDATA и регистра адреса EEADR. Запись нового байта длится около 10 мсек и управляется встроенным таймером. Регистр EECON1 (адрес 88h) - это управляющий регистр шириной пять бит. Младшие пять бит физически существуют, а старшие три бита читаются всегда как `0`.

Управляющие биты RD и WR запускают соответственно чтение и запись. Они могут быть установлены только программно. Сбрасываются- аппаратно по завершения операций чтения/записи. Запрет программного сброса бита WR предотвращает преждевременное окончание записи.

RD - Бит чтения.

RD =1 : Запускает чтение памяти данных EEPROM. Чтение занимает один цикл. Устанавливается программно. Обнуляется аппаратно.

WR - Бит записи.

WR =1 : Запускает запись в память данных EEPROM.

Устанавливается программно. Обнуляется аппаратно.

WREN - Бит разрешения записи в память данных EEPROM.

WREN = 1: Разрешена запись.

WREN = 0: Запрещена запись.

После включения питания WREN обнуляется.

Флаг ошибки WRERR устанавливается, когда процесс записи прерывается сигналом сброса /MCLR или сигналом сброса от WDT таймера. Рекомендуется проверять этот флаг WRERR и при необходимости производить перезапись данных, данные и адрес которых сохраняются в регистрах EEDATA и EEADR.

WRERR - Флаг ошибки записи.

WRERR = 1: Флаг устанавливается, когда операция записи преждевременно прерывается сигналом сброса /MCLR (во время обычного режима или режима SLEEP) или сигналом сброса WDT во время обычного режима.

Флаг EEIF устанавливается, когда встроенный автомат завершает запись в память данных. Он должен быть сброшен программно.

EEIF - Флаг завершения записи.

EEIF = 1: Флаг устанавливается, когда завершена запись. Соответствующий бит разрешения прерывания - EEIE в регистре INTCON [1]

РЕГИСТРЫ ОБЩЕГО HАЗHАЧЕHИЯ

Регистры общего назначения представляют собой статическое ОЗУ, расположенное по адресам 0Ch-2Fh. Всего в PIC16C84 можно использовать 36 ячеек ОЗУ.[1]

СПЕЦИАЛЬHЫЕ РЕГИСТРЫ W, INTCON, OPTION

К ним относятся рабочий регистр W, используемый в большинстве команд в качестве регистра аккумулятора и регистры INTCON и OPTION. Регистр прерываний INTCON (адрес 0Bh) служит для управления режимами прерывания и содержит биты разрешения прерываний от различных источников и флаги прерываний. Регистр режимов OPTION (адрес 81h) служит для задания источников сигнала для предварительного делителя и таймера/счетчика, а также для задания коэффициента деления предварительного делителя, активного фронта сигнала для RTCC и входа прерывания. Кроме того при помощи регистра OPTION могут быть включены нагрузочные резисторы для разрядов порта B, запрограммированных как входы.[1]

СТОРОЖЕВОЙ ТАЙМЕР WDT

Сторожевой таймер WDT предназначен для предотвращения катастрофических последствий от случайных сбоев программы. Watchdog таймер представляет собой полностью независимый встроенный RC генератор, который не требует никаких внешних цепей. Он будет работать, даже если основной генератор остановлен, как это бывает при исполнении команды SLEEP. Таймер вырабатывает сигнал сброса. Выработка таких сбросов может быть запрещена путем записи нуля в специальный бит конфигурации WDTE. Эту операцию производят на этапе прожига микросхем.

Выдержка времени WDT:

Номинальная выдержка WDT составляет 18 мс (без использования делителя). Она зависит от температуры, напряжения питания, от особенностей типов микросхем. Если требуются большие задержки, то к WDT может быть подключен встроенный делитель с коэффициентом деления до 1:128; который программируется путем записи в регистр OPTION. Здесь могут быть реализованы выдержки до 2.5 секунд.

Команды "CLRWDT" и "SLEEP" обнуляют WDT и делитель, если он подключен к WDT. Это запускает выдержку времени сначала и предотвращает на некоторое время выработку сигнала сброс. Если сигнал сброса от WDT все же произошел, то одновременно обнуляется бит "TO" в регистре статуса (f3). В приложениях с высоким уровнем помех, содержимое регистра OPTION подвержено сбою. Поэтому регистр OPTION должен обновляться через равные промежутки времени.

Следует учесть, что наихудшей комбинацией является: Vdd=min, температура=max и max коэффициент деления делителя,- это приводит к самой большой выдержке времени, она может достигать нескольких секунд.[1]

СХЕМА СБРОСА:

Микроконтроллеры семейства PIC используют внутреннюю схему сброса по включению питания в сочетании с таймером запуска генератора, что позволяет в большинстве ситуаций обойтись без традиционного резистора и конденсатора.

В PIC16C84 существуют различия между вариантами сбросов:

1) Сброс по включению питания.

2) Сброс по внешнему сигналу /MCLR при нормальной работе.

3) Сброс по внешнему сигналу /MCLR в режиме SLEEP.

4) Сброс по окончанию задержки таймера WDT при нормальной работе.

5) Сброс по окончанию задержки таймера WDT в режиме SLEEP.

Некоторые из спец.регистров при сбросе не инициализируются. Они имеют случайное состояние при включении питания и не изменяются при других видах сбросов. Другая часть спец.регистров инициализируются в "состояние сброса" при всех видах сброса, кроме сброса по окончанию задержки таймера WDT в режиме SLEEP. Просто этот сброс рассматривается как временная задержка в нормальной работе. Есть еще несколько исключений. Программный счетчик всегда сбрасывается в ноль (0000h). Биты статуса TO и PD устанавливаются или сбрасываются в зависимости от варианта сброса. Эти биты используются программой для определения природы сброса.

Алгоритм сброса при вкл. питания.

Кристалл PIC16C84 имеет встроенный детектор включения питания. Таймер запуска начинает счет выдержки времени после того, как напряжение питания пересекло уровень около 1,2...1,8 Вольт. По истечении выдержки около 72мс считается, что напряжение достигло номинала и запускается другой тайме выдержка на стабилизацию кварцевого генератора. Программируемый бит конфигурации позволяет разрешать или запрещать выдержку от встроенного таймера запуска. Выдержка запуска меняется от экземпляров кристалла, от питания и температуры. Таймер на стабилизацию генератора отсчитывает 1024 импульса от начавшего работу генератора. Считается, что кварцевый генератор за это время вышел на режим. При использовании RC генераторов- выдержка на стабилизацию не производится.

Затем включается таймер ожидания внешнего сброса /MCLR. Это необходимо для тех случаев, когда требуется синхронно запустить в работу несколько PIC контроллеров через общий для всех сигнал /MCLR. Если такого сигнала не поступает, то через время Tost вырабатывается внутренний сигнал сброса и контроллер начинает ход по программе. Время Tost программируется битами конфигурации в EEPROM. Здесь существует проблема, когда Vdd нарастает слишком медленно и все выдержки на запуск, а питание еще не достигло своего минимального значения Vdd(min) работоспособности. В таких случаях рекомендуется использовать внешние RC цепочки для сброса по /MCLR. [1]

ТАКТОВЫЕ ГЕHЕРАТОРЫ

Для микроконтроллеров семейства PIC возможно использование четырех типов тактового генератора:

XT кварцевый резонатор

HS высокочастотный кварцевый резонатор

LP микропотребляющий кварцевый резонатор

RC RC цепочка

Кристаллы PIC16. могут также тактироваться и от внешних источников. Генератор, построенный на кварцевых или керамических резонаторах, требует периода стабилизации после включения питания. Для этого, встроенный таймер запуска генератора держит устройство в состоянии сброса примерно 8 мс после того, как сигнал на /MCLR ножке кристалла достигнет уровня логической единицы. Таким образом, внешняя цепочка RC , связанная с ножкой /MCLR во многих случаях не требуется. Встроенные генераторы работоспособны при определенных номиналах питающего напряжения:

При частотах ниже 500 кГц, внутренний генератор может генерировать сбойный импульс на гармониках, когда переключается бит 0 порта A. Этого не происходит при использовании внешнего генератора или при встроенном RC генераторе.

Генератор на кварцах: PIC16C84-XT, -HS или -LP требуют подключения кварцевого или керамического резонатора к выводам OSC1 и OSC2.

Маркировка следующая: XT - стандартный кварцевый генератор, HS - высокочастотный кварцевый генератор, LP - низкочастотный генератор для экономичных приложений. Резистор Rs может потребоваться для генератора "HS", особенно при частотах ниже 20 МГц для гашения гармоник. Для керамического резонатора более высокая емкость будет увеличивать стабильность генератора, но также будет увеличивать время запуска. В режимах HS и XT, чтобы избежать гармоник может потребоваться последовательный резистор Rs.

RC генератор: Когда не предъявляются требования к быстродействию и к точности по времени, ОТР кристалл, например PIC16C84-RC, позволяет сэкономить деньги и реализовать простой RC генератор.

Частота есть функция питающего напряжения, значений резистора Rext, конденсатора Cext и температуры. Кроме того, частота генератора будет незначительно изменяться от партии к партии. На частоту генерации влияет собственная емкость корпуса кристалла, ее влияние заметно для малых значений Cext. Нужно принять во внимание также дрейф R и C элементов. Для значений Rext ниже 2.2 кОМ генератор может работать нестабильно или не заводиться. При очень больших значениях Rext ( напр. 1 МОм) генератор становится чувствительным к помехам, влажности и монтажным утечкам тока.

Рекомендуемая величина Rext находится между 5 КОм и 100 КОм. Хотя генератор работоспособен и при отсутствии внешнего конденсатора (Cext = 0), С малой Cext, или вообще без нее, частота генератора сильно зависит от монтажных емкостей. Разброс будет тем больше, чем больше величина R.

Сигнал с частотой генератора, деленной на 4, присутствует на ножке OSC2/CLKOUT, и может быть использован для целей тестирования или синхронизации других схем.[1]

Организация встроенного ПЗУ:

Программный счетчик в PIC16C84 имеет ширину 13 бит и способен адресовать 8Кх14бит объема программной памяти. Однако, физически на кристалле имеется только 1Кх14 памяти (адреса 0000h-03FFh). Обращение к адресам выше 3FFh фактически есть адресация в тот же первый килобайт. Вектор сброса находится по адресу 0000h, вектор прерывания находится по адресу 0004h.

EEPROM PIC16C84 рассчитан на ограниченное число циклов стирания/записи. Чтобы записать в программную память, кристалл должен быть переведен в специальный режим при котором на ножку /MCLR подается напряжение программирования Vрrg, а питание Vdd должно находиться в пределах 4.5 В ... 5.5В. PIC16C84 непригоден для применений, в которых часто модифицируется программа. Запись в программную память осуществляется побитно, последовательно с использованием только двух ножек.

Стек и возвраты из подпрограмм:

Кристалл PIC16C84 имеет восьмиуровневый аппаратный стек шириной 13 бит. Область стека не принадлежит ни к программной области ни к области данных, а указатель стека пользователю недоступен. Текущее значение программного счетчика посылается в стек, когда выполняется команда CALL или производится обработка прерывания. При выполнении процедуры возврата из подпрограммы команды RETLW , RETFIE или RETURN, в программный счетчик выгружается содержимое стека. Регистр PCLATH (0Ah) не изменяется при операциях со стеком.

Долговременная Память данных EEPROM:

Память данных EEPROM позволяет прочитать и записать байт информации. При записи байта автоматически стирается предыдущее значение и записываются новые данные (стирание перед записью). Все эти операции производит встроенный автомат записи EEPROM. Содержимое ячеек этой памяти сохраняется при выключении питания. Кристалл PIC16C84 имеет память данных 64х8 EEPROM бит, которая позволяет запись и чтение во время нормальной работы (во всем диапазоне питающих напряжений). Эта память не принадлежит области регистров ОЗУ. Доступ к ней осуществляется через два регистра: EEDATA <08h>, который содержит в себе восьмибитовые данные для чтения/записи и EEADR <09h>, который содержит в себе адрес ячейки к которой идет обращение. Дополнительно имеется два управляющих регистра: EECON1 <88h> и EECON2 <89h>.

При считывании данных из памяти EEPROM необходимо записать требуемый адрес в EEADR регистр и затем установить бит RD EECON1<0> в единицу. Данные появятся в следующем командном цикле в регистре EEDATA и могут быть прочитаны. Данные в регистре EEDATA защелкиваются.

При записи в память EEPROM, необходимо сначала записать требуемы адрес в EEADR регистр и данные в EEDATA регистр. Затем выполнить специальную последовательность команд, производящую непосредственную запись:

movlv 55h

movwf EECON2

movlv AAh

movwf EECON2

bsf EECON1,WR ;установить WR бит, начать запись

Во время выполнения этого участка программы, все прерывания должны быть запрещены для точного выполнения временной диаграммы. Время записи - примерно 10мс. Фактическое время записи будет изменяться в зависимости от напряжения, температуры и индивидуальных свойств кристалла. В конце записи бит WR автоматически обнуляется, а флаг завершения записи EEIF, он же запрос на прерывание, устанавливается.

Для предотвращения случайных записей в память данных предусмотрен специальный бит WREN в регистре EECON1. Рекомендуется держать бит WREN выключенным, кроме тех случаев, когда нужно обновить память данных. Более того, кодовые сегменты, которые устанавливают бит WREN и те, которые выполняют запись должны храниться на различных адресах, чтобы избежать случайного выполнения их обоих при сбое программы.[1]

Обзор команд и обозначения.

Каждая команда PIC16C84 - это 14-битовое слово, которое разделено по смыслу на следующие части: - 1. код операции, -2. поле для одного и более операндов, которые могут участвовать или нет в этой команде. Система команд PIC16C84 включает в себя байт-ориентированные команды, бит-ориентированные, операции с константами и команды передачи управления.

Для байт-ориентированных команд «f» обозначает собой регистр, с которым производится действие; «d» - бит определяет, куда положить результат. Если «d» =0, то результат будет помещен в W регистр, при «d»=1 результат будет помещен в «f», упомянутом в команде. Для бит-ориентированных команд «b» обозначает номер бита, участвующего в команде, а «f» -это регистр , в котором этот бит расположен.

Для команд передачи управления и опреаций с константами, «k» обозначает восьми или одиннадцатибитную константу.

Все команды выполняются в течение одного командного цикла. В двух случаях исполнение команды занимает два командных цикла: -1. проверка условия и переход, -2.изменение программного счетчика как результат выполнения команды. Один командный цикл состоит из четырех периодов генератора. Таким образом, для генератора с частотой 4 МГц время исполнения командного цикла будет 1 мкс.[1]

Дополнительные режимы работы:

Конфигурационное слово:

Кристалл PIC16C84 имеет пять битов конфигурации, которые хранятся в EEPROM и устанавливаются на этапе программирования кристалла. Эти биты могут быть запрограммированы (читается как `0`) или оставлены не- запрограммироваными (читается `1`) для выбора подходящего варианта конфигурации устройства. Эти биты расположены в EEPROM памяти по адресу 2007h. Пользователю следует помнить, что этот адрес находится ниже области кодов и недоступен программе. Ячейка EEPROM конфигурации.

CP - Бит защиты кода.

CP = 1: Код защиты выключен

CP = 0: Код защиты включен

Остальные биты в слове не используются и читаются как единицы.

Индивидуальная метка:

Кристалл PIC16C84 имеет четыре слова, расположенные по адресу (2000h-2003h) Они предназначены для хранения идентификационного кода (ID) пользователя, контрольной суммы или другой информации. Как и слово конфигурации, они могут быть прочитаны или записаны только с помощью программатора. Доступа по программе к ним нет. Если кристалл защищен, пользователю рекомендуется использовать для идентификации только младшие семь бит каждого ID слова, а в старший бит записывать `0`. Тогда ID слова можно будет прочитать даже в защищенном варианте.

Защита программ от считывания:

Программный код, который записан в кристалл, может быть защищен от считывания при помощи установки бита защиты (CP) в слове конфигурации в ноль. Содержимое программы не может быть прочитано так, что с ним можно было бы работать. Кроме того, при установленном бите защиты становится невозможным изменять программу. То-же относится и к содержимому памяти данных EEPROM.

Если установлена защита, то бит CP можно стереть только вместе с содержимым кристалла. Сначала будет стерта EEPROM программная память и память данных и в последнюю очередь бит защиты кода CP.

Проверка кристалла с установленной защитой. При считывании защищенного кристалла, чтение любого адреса памяти даст результат, похожий на 0000000XXXXXXX(двоичный код), где X- это 0 или 1. Чтобы проверить сохранность памяти в защищенном кристалле, следуйте правилам:

1) запрограммируйте и проверьте работу исправного кристалла.

2) установите защиту кода программы и считайте содержимое программной памяти в файл-эталон.

3) проверяйте любой защищенный кристалл путем сравнения его программной памяти с содержимым этого эталона.

Память данных EEPROM не может быть проверена после установки бита защиты.

Режим пониженного энергопотребления:

Вход в режим SLEEP осуществляется командой SLEEP. По этой команде, если WDT разрешен, то он сбрасывается и начинает счет времени, бит "PD" в регистре статуса (f3) сбрасывается, бит "TO" устанавливается, а встроенный генератор выключается. Порты ввода/вывода сохраняют состояние, которое он имели до входа в режим SLEEP. Для снижения потребляемого тока в этом режиме, ножки на вывод должны иметь такие значения, чтобы не протекал ток между кристаллом и внешними цепями. Ножки на ввод должны быть соединены внешними резисторами с высоким или низким уровнем, чтобы избежать токов переключения, вызываемых плавающими высокоомными входами. То же и про RTCC. Ножка /MCLR должна быть под напряжением Vihmc.

Выход из режима SLEEP осуществляется в результате следующих событий:

1. Внешний сброс - импульс низкого уровня на на ножке /MCLR.

2. Сброс при срабатывании WDT(если он разрешен)

3. Прерывания. (Прерывание с ножки INT, прерывание при изменении порта B, прерывание при завершении записи данных EEPROM).

При первом событии происходит сброс всего устройства. Два других события предполагают продолжение выполнения программы. Бит "PD" в регистре статуса (f3), который устанавливается при включении, но обнуляется командой "SLEEP", может быть использован для определения состояния процессора до "просыпания": или процессор был в режиме "SLEEP"(горячий старт), или было просто выключено питание (холодный старт). Бит "TO" позволяет определить, чем был вызван выход из режима SLEEP: или внешним сигналом на ножке /MCLR, или срабатыванием WDT.

Чтобы устройство вышло из режима SLEEP через прерывание, это прерывание должно быть разрешено установкой соответствующей маски в регистре INTCON. При выходе из режима SLEEP будет выполняться фоновая программа, если общая маска запрещает все прерывания (GIE=0). Если GIE=1, то будет выполняться подпрограмма обработки прерываний.[1]

Делись добром ;)