1.1 Обзор существующих программно-аппаратных комплексов
В последние годы созданы вполне работоспособные приборы и целые комплексы, позволяющие регистрировать результаты динамометрирования в электронной памяти этих устройств с последующей (или одновременной) обработкой их на электронно-вычислительных машинах. Программно-математическое обеспечение (ПМО) каждого комплекса имеет свое оформление, требования к исходным данным и используемые методики их обработки.
1.1.1 Комплексная система исследования работы тепловых насосов
"Анализатор"
Данная система разработана американской компанией "Есhоmеtег". Она представляет собой комплекс измерительных датчиков. Управление их работой и обработка получаемой информации производятся компьютером совместно с аналого-цифровым преобразователем. Такая система осуществляет обработку данных акустических микрофонов, датчиков давления и нагрузки, акселерометров, датчиков тока двигателя, тахометров и других измерительных устройств.
Для измерения уровня жидкости в кольцевом пространстве акустическим методом эта система используется совместно с генератором импульсов, микрофоном и датчиком давления. Эти измерения используются для определения давления работающего теплового насоса. А знание давления и использование модели притока жидкости, с учетом определенного анализа, позволяют определять эффективный дебит насоса.
На тепловых глубинных насосов данная система применима для динамометрических исследований с измерением нагрузок на полированном штоке, ускорения движения полированного штока и потребляемого двигателем электрического тока.
1. Для количественного динамометрического анализа необходимы данные высокой степени точности, которые можно получить с помощью подковообразного калиброванного датчика, измеряющего механическое напряжение.
2. Для получения качественной информации, позволяющей судить об эффективности работы насоса и выявлять (диагностировать) некоторые неисправности оборудования, используется С-образный облегченный датчик, прикрепляемый. Если коэффициент Пуассона для стали равен примерно 0,3, то радиальное напряжение составит около ЗОУ0 от осевой нагрузки.
В обоих случаях для определения перемещения используется очень компактный акселерометр на интегральной схеме, который встроен в датчик измерения нагрузки. Таким образом, необходим только один кабель для соединения компьютера и датчика нагрузки. Скорость движения является результатом интегрирова-ния сигнала ускорения акселерометра, а повторное интегрирование дает значение положения полированного штока как функции времени. Благодаря высокой скорости обработки информации компьютером, применяемым в комплексе систем "Анализатор", данные динамометрии появляются на экране сразу по мере измерения. В отдельном окне представляется график потребления электрического тока двигателем станка-качалки: анализ потребления электрического тока дает представление об уравновешенности станка-качалки.
Примеры графиков, получаемых при исследовании насосов с помощью комплексной системы "Анализатор", приведены на рисунке 1.1
1 -- зависимость нагрузки на полированном штоке от положения балансира СКН (несколько циклов);
2 -- зависимость нагрузки на полированном штоке от времени;
3 -- зависимость нагрузки на полированном штоке от положения балансира СКН;
4 -- зависимость тока электродвигателя привода СКН от времени;
5 -- зависимость нагрузки на плунжере насоса от положения балансира СКН.
Рисунок 1.1 Примеры графиков, получаемых при исследовании с помощью комплексной системы "Анализатор"
- Введение
- 1.Обзор существующих аналогов проектируемой системы
- 1.1 Обзор существующих программно-аппаратных комплексов
- 1.2.2 Комплекс СТК РНК
- 1.2.3 Системы контроля “Cидосс”
- 1.3 Обзор тепловых насосов
- 2.Анализ технического задания
- 3.Структурные решения
- 3.1 Разработка функциональной схемы системы
- 3.2 Разработка технической структуры периферийного устройства
- 3.2.1 Датчики
- 3.2.1.1Датчик измерения температуры
- 3.2.1.2 Датчик для измерения давления