Цифровые средства измерения

контрольная работа

2. Цифровые вольтметры

Цифровые измерительные приборы (ЦИП) автоматически преобразуют непрерывную измеряемую величину или ее аналог (физическую величину, пропорциональную измеряемую) в дискретную, выполняют цифровое кодирование и выдают результат измерения на цифровое табло прибора в десятичном коде для визуального отсчета и в двоичном коде для ввода в компьютер или на цифропечатающее устройство.

Среди ЦИП особое место занимают цифровые вольтметры (ЦВ) постоянного тока. В отличие от аналоговых приборов они содержат аналого-цифровой преобразователь (АЦП), в котором выполняются операции квантования по уровню и кодирования, а также устройство цифрового отсчета. Цифровые вольтметры классифицируют по способу преобразования непрерывной величины в дискретную; структурной схеме АЦП; способу уравновешиваня.

По способу преобразования различают ЦВ с кодоимпульсным (поразрядным кодированием, взвешиванием), с время- и частотно-импульсными преобразованиями. В ЦВ с кодоимпульсным преобразованием происходит последовательное сравнение значений измеряемой величины с рядом дискретных значений известной величины, изменяющейся по определенному закону. Цифровой вольтметр с кодоимпульсным преобразованием называют еще вольтметром поразрядного кодирования. В ЦВ с времяимпульсным преобразованием измеряемая величина Ux преобразуется во временной интервал ?x с последующим заполнением этого интервала импульсами N образцовой частоты, которые подсчитываются цифровым счетчиком. В ЦВ с частотно-импульсным преобразованием (интегрирующих) измеряемое напряжение Ux преобразуется в частоту f следования импульсов, которые подсчитываются за определенный интервал времени цифровым счетчиком.

По структурной схеме цифровые вольтметры делят на вольтметры прямого и уравновешивающего преобразования. В вольтметрах прямого преобразования отсутствует обратная связь с выхода на вход и непрерывная измеряемая величина непосредственно преобразуется в дискретную. В цепи прохождения сигнала имеется несколько преобразователей. Эти вольтметры отличаются относительно низкой точностью (из-за накопления погрешностей отдельных преобразователей в процессе преобразования), однако могут обеспечить максимально возможное быстродействие. В вольтметрах уравновешивающего преобразования обязательно имеется обратная связь, т. е. входная величина в процессе преобразования уравновешивается выходной. Так как выходной величиной преобразователя является код (цифра), обратный преобразователь называют цифроаналоговым преобразователем (ЦАП).

Аналого-цифровой преобразователь уравновешивающего преобразования обеспечивает максимально возможную точность за счет использования общей отрицательной обратной связи, но меньшее быстродействие.

По способу уравновешивания ЦВ делят на вольтметры со следящим и развертывающим уравновешиванием.

В вольтметрах со следящим уравновешиванием измеряемая величина х непрерывно сравнивается с компенсирующей величиной. Компенсирующая величина изменяется во времени до тех пор, пока с заданной точностью не будет достигнуто ее равенство с измеряемой, после чего выполняется отсчет. В вольтметрах с развертывающим уравновешиванием операция сравнения измеряемой и компенсирующей величин происходит по определенной наперед заданной программе. Компенсирующее напряжение принудительно изменяется от нуля до максимального значения и прекращает это изменение в момент равенства напряжений.

Цифровые измерительные приборы являются сложными устройствами, их функциональные узлы выполняются на основе элементов электронной техники (интегральных схем-дешифраторов, ЦАП, АЦП, триггеров, операционных усилителей, аналоговых ключей на диодах, биполярных и полевых транзисторов; логических ключей и др.).

Каждый ЦВ имеет устройство цифрового отсчета, состоящее. из дешифраторов и знаковых (цифровых) индикаторов. Дешифраторы являются преобразователями дискретных сигналов, т. е. позволяют получать на выходе необходимую комбинацию сигналов при подаче определенной комбинации сигналов на входе. В ЦВ дешифраторы преобразуют двоично-десятичный код в соответствующие напряжения, управляющие цифровыми индикаторами, которые обеспечивают визуальную индикацию в десятичном коде (например, код 8-4-2-1 в десятичный код от 0 до 9). Для выполнения этой задачи обычно используют логические схемы как наиболее простые и достаточно быстродействующие. Знаковые индикаторы используют для представления результатов измерения в цифровой форме. Конструкция знаковых индикаторов может быть различна.

Современные цифровые индикаторы разрабатываются на основе электрооптических эффектов в твердом теле и жидких кристаллах и др. Индикаторы выпускаются в миниатюрном исполнении с использованием светодиодов и жидких кристаллов. Люминесцентные мозаичные индикаторы обеспечивают яркое и четкое изображение цифр. Они состоят из отдельных элементов мозаики, светящихся при подключении напряжения к соответствующим элементам. Мозаичные индикаторы со светоизлучающими диодами обладают высокой надежностью и хорошей совместимостью с транзисторными схемами. Для улучшения параметров ЦИП создаются комбинированные структуры с одновременным использованием различных методов преобразования, адаптивные (приспосабливающиеся к параметрам измеряемого сигнала) структуры с автоматической коррекцией, автоматической калибровкой, структуры с устранением избыточной информации, со статистической обработкой информации, термостатирующими устройствами и др., используются элементы, узлы, обладающие улучшенными характеристиками.

Делись добром ;)