Электросхемы

дипломная работа

2. Исследовательская часть

2.1 Обоснование выбора элементов схемы

2.2.1 Обоснование выбора диодов

В схеме используется диод VD1 КД 521Г. Выберем наиболее подходящий диод из ниже приведённого списка.

Таблица 3.1

Тип диода

Допустимый прямой ток

Максимальный обратный ток

КД521Г

0,05А

1мкА

КД522А

0,1А

5мкА

КД512Б

0,02А

5мкА

Выбираем транзистор наиболее соответствующий параметрам КД521Г

В схеме используют импортный диод VD2 FV507 мы его заменим на КД227ГС.

Электрические параметры КД227ГС:

Прямой максимальный ток ……………………………………………5А

Обратный максимальный ток ……………………………………800мкА

Входное максимальное напряжение …………………………………280В

Температура эксплуатации …………………………………………..-45…+85

2.2.2. Обоснование выбора резисторов

Все резисторы выбираются по требуемому номинальному значению и мощности. Иногда в особо точных схемах учитывается допустимое отклонение от номинальной величины сопротивления. Допустимое отклонение от номинальной величины сопротивления зависит от типа резистора: композиционный, проволочный, угольный. Выбирая резисторы по мощности, определяется мощность рассеяния на каждом резисторе отдельно по формуле P=UI, P=U2/R, P=I2R, выведенные из закона Ома. Полученная величина увеличивается вдвое. Исходя из полученных значений выбирают резисторы эталонных мощностей: 0,125, 0,25, 0,5 ,1, 2 ,5, 10Вт и т.д.

Металлооксидные резисторы содержат резистивный элемент в виде очень тонкой металлической пленки, осажденной на основании из керамики, стекла, слоистого пластика, ситалла или другого изоляционного материала. Металлопленочные резисторы характеризуются высокой стабильностью параметров, слабой зависимостью сопротивления от частоты и напряжения и высокой надежностью. ТКС резисторов типов МТ и ОМЛТ не превышает 0,02%. Уровень шумов резисторов группы А не более 1мкВ/В, группы Б - не более 5 мкВ/В.

2.2.3. Обоснование выбора конденсаторов

При выборе конденсаторов для радиоэлектронных устройств, приходиться решать одну из противоположных по своему характеру задач. Прямая задача - по известному стандартному напряжению конденсатора найти максимально допустимые значения переменной и постоянной составляющих рабочего напряжения. Обратная задача заключается нахождения типа и стандартного напряжения конденсаторов по рабочему режиму.

Под номинальным напряжением понимается наибольшее напряжение между обкладкам конденсатора, при котором он способен работать с заданной надёжностью в установленном диапазоне рабочих температур. Номинальное напряжение, оговоренное стандартами, называется стандартным напряжением - оно маркируется на конденсаторах, выпускаемых согласно действующих стандартов. Под рабочим напряжением подразумевается значения постоянного и переменного напряжения, которые действуют на конденсаторе при его работе.

Прямая задача нахождения рабочего напряжения по стандартному решается с помощью условий, оговоренных в действующих стандартах. Однако эти условия справедливы лишь для тех случаев, когда переменная составляющая (пульсация) напряжения на конденсаторе меняется по закону гармонического колебания.

Для решения обратной задачи - нахождения типа и стандартного напряжения конденсатора по рабочему режиму, необходимо вначале найти минимальное напряжение, а затем выбрать ближайшее к нему стандартное значение.

Величина рабочего напряжения конденсатора ограничивается тремя требованиями:

а) конденсатор не должен перегреваться;

б) перенапряжение на нём недопустимо;

в) он должен быть защищён от прохождения обратных токов, если это полярный оксидный конденсатор.

Для того чтобы конденсатор не перегревался следует рассчитать выделяемую на нём реактивную мощность. Она не должна превышать номинальную мощность конденсатора.

Чтобы защитить конденсатор от перенапряжения, рабочее напряжение на нём не должно превышать номинальное. Это условие формулируется в стандартах как сумма постоянной составляющей и амплитуды переменной составляющей рабочего напряжения не должна быть больше стандартного напряжения.

Полярные оксидные конденсаторы, помимо перегрева и перенапряжения, должны быть защищены от прохождения разрушающих обратных токов. Чтобы оксидная плёнка была непроводящей, потенциал оксидированного метала (анода) должен всегда превышать потенциал второго электрода (катода). С этой целью в стандартах оговаривается, что амплитуда переменной составляющей напряжения не должна превышать постоянную составляющую.

Керамические конденсаторы представляют собой пластинки, диски или трубки из керамики с нанесенными на них электродами из металла. Для защиты от внешних воздействий эти конденсаторы окрашивают эмалированной краской или герметизируют, покрывая эпоксидными компанентами после чего заключают в специальный корпус. Керамические конденсаторы широко применябтся в качестве контурных, блокировочных, разделительных. Конденсаторы с диэлектриком из высококачественой керамики характеризуются высокими электролитическими показателями и сравнительно небольшой стоимостью. Сопративление изоляции этих конденсаторов при 200С превышает 5…10 ГОм, тангенс угла потерь на частотах порядка.

Электролитические и оксидно-олупроводниковые конденсаторы отличаются малыми размерами, большими токами утечки и большими потерями. При одинаковых номинвльных напряжениях и номинальных емкостях объем танталовых конденсаторов меньше объема конденсаторов с аллюминивыми анодами. Танталовые конденсаторы могут работать приболеее высоких температурах, их емкость меньше изменяется при изменении температуры, токи утечки у них меньше. Оксидно-полупроводниковые конденсаторы могут работать при более низких температурах, чем электролитические.

Проводимость широко распространненных электролитических и оксидно-полупроводниковых онденсаторов сильно зависит от полярности приложенного напряжения, поэтому они используются лишь в цепях постоянного и пульсирующего токов.

Электролитические и оксидно-полупроводниковые конденсаторы используются в фильтрах выпрямителей, в качестве блокирующих и развязывающих в цепях звуковых частот, а также в качестве переходных в полупроводниковых усилителях звуковых частот.

2.2.4 Обоснование выбора микросхем.

В схеме персонального компьютера - музыкального центра используется:

Микросхема TDA 1522.

Электрические параметры TDA 1522:

Номинальное напряжение источника питания, (В) ………………….16

Минимальное напряжение источника питания, (В) ………………….7,5

Максимальное напряжение источника питания, (В) …………………91

Выходная мощность, (Вт) ……………………………………………….8

Максимальный выходной ток, (А) ……………………………………....4

Номинальный потребляемый выходной ток, (мА) ……………………40

Максимальный потребляемый выходной ток, (мА) …………………..70

Микросхема TDA 1524 Электрические параметры:

Номинальное напряжение источника питания, (В) …………………14,4

Минимальное напряжение источника питания, (В) …………………….6

Максимальное напряжение источника питания, (В) …………………18

Выходная мощность, (Вт) ………………………………………………22

Номинальный потребляемый выходной ток, (мА) ……………………80

Микросхема TDA 1552Q Электрические параметры:

Номинальное напряжение источника питания, (В) …………………14.4

Минимальное напряжение источника питания, (В) …………………….6

Максимальное напряжение источника питания, (В) …………………18

Выходная мощность, (Вт) ………………………………………………22

Номинальный потребляемый выходной ток, (мА) ……………………5.5

Микросхема TDA 2822D Электрические параметры:

Номинальное напряжение источника питания, (В) …………………….6

Минимальное напряжение источника питания, (В) ………………….1,8

Максимальное напряжение источника питания, (В) …………………15

Выходная мощность, (Вт) ……………………………………………0.38

Максимальный выходной ток, (А) …………………………………….0.1

Номинальный потребляемый выходной ток, (мА) ……………………15

Двух контактный коммутатор низкочастотных сигналов TDA 1029

Электрические параметры:

Номинальное напряжение источника питания, (В) ………………….165

Максимальное напряжение источника питания, (В) ………………13,3

Максимальный потребляемый выходной ток, (мА) …………………..80

3. Расчетная часть

3.1. Расчет надежности

Расчет надежности проводится на этапе проектирования. Для расчета задаются ориентирные данные. В качестве температуры окружающей среды может быть принято среднее значение температуры в нутрии блока. Для большинства маломощных полупроводниковых устройств она не превышает 400С.

Для различных элементов при расчетах надежности служат различные параметры. Для резисторов и транзисторов это допустимая мощность рассеивания, для конденсаторов допустимое напряжение, для диодов - прямой ток.

Коэффициенты нагрузок для элементов каждого типа по напряжению могут быть определены по величине напряжения источника питания. Так для конденсаторов номинальное напряжение рекомендуется брать в 1.5 -2 раза выше напряжения источника питания. Рекомендуемые коэффициенты приведены в таблице 1.

Таблица 1.

Наименование элемента

Контрольные параметры

k нагрузки

импульсный режим

статический режим

Транзисторы

Ркдопkн = Рф / Ркдоп

0,5

0,2

Диоды

Iпрмахkн = Iф / Iпрт

0,5

0,2

Конденсаторы

Uобклkн = Uф / Uобкл

0,7

0,5

Резисторы

Pтрасkн = Рф / Рдоп

0,6

0,5

Трансформаторы

Iнkн = Iф / Iндоп

0,9

0,7

Соединители

Iконтактаkн = Iф / Iкдоп

0,8

0,5

Микросхемы

Iмах вх / Iмах вых

-

-

Допустимую мощность рассеяния резисторов можно определить от принятым обозначении на схеме.

Таблица 2.

Допустимую мощность рассеяния следует брать в качестве номинального параметра, надо брать в половину меньше согласно таблице 1.

Для конденсаторов номинальным параметром в расчете надежности считается допустимые напряжения на обкладках конденсатора. В большинстве схем этот параметр не указывается. Его следует выбирать исходя из напряжения источника питания. Uн, для конденсатора следует брать в два раза (или в полтора) больше напряжения источника питания. При этом следует учитывать, что согласно ГОСТу конденсаторы выпускаются на допустимое напряжение (в вольтах) 1; 1,6; 2,5; 3,2; 4; 6,3; 10; 16; 20; 25; 32; 40; 50; 63; 80; 100; 125; 160; 200; 250; 315; 350.

Конденсаторы на более высокие допустимые напряжения на обкладках, в схемах курсового и дипломного проектирования практически не применяются.

Фактически знание (Uф) для конденсаторов в расчете надежности следует брать в половинку меньше выбранного.

Для транзисторов номинальный параметр Рк допустимое следует брать из справочников.

Для диодов контролируемый параметр величина прямого тока Iпр. Брать в справочниках.

Фактическое значение параметров этих элементов следует брать исходя из рекомендации таблицы 1.

При увеличении коэффициента нагрузки интенсивность отказов увеличиться.

Она так же возрастает, если элемент эксплуатируется в более жестоких условиях: при повышенной температуре, влажности, при ударах и вибрациях. В стационарной аппаратуре, работающей в отапливаемых помещениях, наибольшее влияние на надежность аппаратуры имеет температура.

Определяя интенсивность отказов при t0 = 200C приведены в таблице 2.

Интенсивность отказов обозначается ?0. Измеряется ?0 в (1/час).

Таблица 3.

Наименование элемента

?o*10-6 1/час

Микросхемы средней степени интеграции

0,013

Большие интегральные схемы

0,01

Транзисторы германиевые: Маломощные

0,7

Средней мощности

0,6

мощностью более 200мВт

1,91

Кремневые транзисторы: Мощностью до 150мВт

0,84

Мощностью до 1Вт

0,5

Мощностью до 4Вт

0,74

Низкочастотные транзисторы: Малой мощности

0,2

Средней мощности

0,5

Транзисторы полевые

0,1

Конденсаторы: Бумажные

0,05

Керамические

0,15

Слюдяные

0,075

Стеклянные

0,06

Пленочные

0,05

Электролитические (алюминиевые)

0,5

Электролитические (танталовые)

0,035

Воздушные переменные

0,034

Резисторы: Композиционные

0,043

Плёночные

0,03

Угольные

0,047

Проволочные

0,087

Диоды: Кремневые

0,2

Выпрямительные

0,1

Универсальные

0,05

Импульсные

0,1

Стабилитроны германиевые

0,157

Трансформаторы Силовые

0,25

Звуковой частоты

0,02

Высокочастотные

0,045

Автотрансформаторные

0,06

Дроссели:

0,34

Катушки индуктивности

0,02

Реле

0,08

Антенны

0,36

Микрофоны

20

Громкоговорители

4

Оптические датчики

4,7

Переключатели, тумблеры, кнопки

0,07n

Соединители

0,06n

Гнезда

0,01n

Пайка навесного монтажа

0,01

Пайка печатного монтажа

0,03

Пайка объемного монтажа

0,02

Предохранители

0,5

Волновые гибкие

1,1

Волновые жесткие

9,6

Электродвигатели: Асинхронные

0,359

Асинхронные вентиляторы

2,25

Порядок расчета.

В таблицу 3 заносятся данные из принципиальной схемы.

Таблица заполняется по колонкам. В 1-ую колонку заносятся наименования элемента, его тип определяется по схеме. Часто в схемах не указывается тип конденсатора, а дается только его ёмкость. В этом случае следует по емкости, и выбрать подходящий тип конденсатора в справочнике. Тип элемента заносится во вторую колонку.

Однотипные элементы записываются одной строкой, а их число заносится в колонку 4.

Микросхемы вне зависимости от типа объединяются в одну группу и записываются в одну строку. Это связано с тем, что у них независимо от типа одинаковая интенсивность отказов, и они могут работать в достаточно широком диапазоне температур. (Большие интегральные схемы не применяются в курсовых и дипломных проектах).

В колонку 4 заносится температура окружающей среды. Её надо определять, исходя из назначения прибора или устройства. Если устройство работает в отапливаемом помещении и не имеет мощных транзисторов, температуру можно брать 400С.

Далее следует запомнить колонку 6. пользуясь теми рекомендациями, которые были даны выше.

Студенту, как правило, не известны фактические параметры элемента. Выбирать их надо, руководствуясь рекомендациями таблицы 1.

Коэффициенты нагрузок.

Для транзисторов: kн = Pф / Pкдоп = Pф / Pн

kн= 100/200=0,5

Для диодов: kн = Iф/Iпрср= Iф/Iн

kн = 0.5/1=0,5

Для резисторов: kн = Pф / Pн

kн =0,25/0,125=0,5

Для конденсаторов: kн = Pф / Pн

kн =6/12=0,5

Если kн в таблице для элемента не указано, то следует ставить прочерк или брать kн = 0,5.

Колонка 7 заполняется по справочнику.

Далее определяется коэффициент влияния (?), которое показывает, как влияет на интенсивность отказов окружающая элемент температура в связи с коэффициентом нагрузки. Находят (?) по таблице 4.

При k = 0,5 и t=400С значение, а будет =

Для полупроводниковых приборов 0,3

Для керамических конденсаторов 0,5

Для бумажных конденсаторов 0,8

Для электролитических конденсаторов 0,9

Для металлодиэлектрических или металлооксидных резисторов 0,8

Для силовых трансформаторов 0,6

Для германиевых полупроводниковых диодов ? брать таким, как у кремневых. Если в таблице нет тех элементов, которые есть в конкретной схеме. Следует спросить у преподавателя, как быть.

Колонка 10 заполняется из соответствующей таблицы 2.

Колонка 11 ?i = ?*?

Если изделие испытывает воздействие ударных нагрузок или реагирует, на влажность, атмосферное давление, следует учесть это влияние. В этом случае ?i в колонке 11

?i = ?0*а*а123

где а - коэффициент влияния температуры;

а1 - коэффициент влияния механических воздействий;

а2 - коэффициент влияния влажности;

а3 - коэффициент влияния атмосферного давления.

Значение а1, а2 и а3 определяются по нижеследующим таблицам.

Когда колонка 12 заполнена. Можно рассчитать среднее время наработки на отказ Tср.

Для этого суммируют все значения колонки 12, получая

??с. Тогда Tcp = 1/??с (час)

Следует помнить, что ??с - число, умноженное на 10-6 , т.е. при делении 10-6 перейдет в числитель.

? ?с = 14,095*10-6

Тср = 1/14,095*10-6

Тср = 1060,0709471 = 70947,144 часов.

Делись добром ;)