Методика построения асимптотической ЛАЧХ системы автоматического управления

контрольная работа

Частотные характеристики апериодического звена

Апериодическое (инерционное) звено

Динамические свойства апериодического звена определяются дифференциальным уравнением первой степени:

T• y?(t) + y(t) = K• x(t). (13)

Из данного выражения следует, что динамические свойства звена зависят от аргумента Т, называющегося постоянной времени и определяющего длительность переходного процесса от начального значения выходной функции y(t) к установившемуся постоянному ее значению при подаче на вход единичной ступенчатой функции 1(t).

Уравнение (13) может быть также представлено в операторной форме:

T•p•y + y = y(T•p + 1) = K• x. (14)

Из уравнения (14) легко получаем аналитическое выражение для передаточной функции апериодического звена:

W(p) = y/x = K/(T•p + 1). (15)

Учитывая, что передаточная функция есть ничто иное, как изображение по Лапласу L[g(t)] весовой функции, найдем оригинал весовой функции, представив передаточную функцию в виде произведения изображений простейших функций, оригиналы которых можно найти из справочных таблиц изображений функций.

L[g(t)] = W(p) = K/(T•p + 1) = (K/T)•1/(p + 1/T). (16)

В нашем случае изображение некоторой неизвестной функции f(t) равно L[f(t)] = 1/(p + 1/T), которому соответствует оригинал f(t) = ept, где p - есть ничто иное, как решение (корень) характеристического уравнения, получаемого приравниванием выражения в знаменателе изображения L[f(t)] к нулю: p + 1/T = 0, откуда р = - 1/T. Следовательно, выражение для весовой функции будет иметь вид:

g(t) = (K/T)•f(t) = (K/T)•e-t/T (17)

Переходную функцию h(t) можно найти интегрированием правой части выражения (17), которое производим в операторной форме путем умножения изображения весовой функции L[g(t)] на отношение (1/р), представляющее собой передаточную функцию интегрирующего звена со статическим коэффициентом усиления, равным 1:

L[h(t)] = L[g(t)]• 1/р = (1/р)• (K/T)•1/(p + 1/T). (18)

Для отыскания оригинала функции h(t) разложим правую часть выражения (18) на элементарные дроби, используя метод неопределенных коэффициентов.

(K/T)/[p•(p + 1/T)] = A/p + B/(p + 1/T) = [A•(p + 1/T) + B•p]/[p•(p + 1/T)],

откуда

K/T = A/T + A•p + B•p = A/T + p•(A + B).

Приравнивая коэффициенты в левой и правой частях полученного выражения при одинаковых степенях оператора р, получим:

K/T = A/T, или А = К;

А + В = 0, откуда В = -А = -К;

следовательно:

(K/T)/[p•(p + 1/T)] = K/p - K/(p + 1/T) = K•[1/p - 1/(p + 1/T)]. (19)

Переходя от изображений (19) к оригиналам простейших функций, получим выражение для переходной функции апериодического звена:

h(t) = K•(1 - e-t/T). (20)

Корень характеристического уравнения в изображении (1/р) элементарной функции f(t) равен нулю (р = 0), поэтому ее оригинал равен:

f(t) = ept = e0t = e0 = 1.

Колебательное звено. Динамические свойства колебательного звена определяются дифференциальным уравнением второй степени и зависят не только от постоянной времени Т, но и от коэффициента кси о, называемого коэффициентом демпфирования, характеризующего степень затухания колебаний:

T2•y??(t) + 2о•T•y?(t) + y(t) = K• x(t). (21)

Представим уравнение (21) в операторной форме и найдем из него выражение для передаточной функции:

T2•p2•y + 2о•T•p•y + y = (T2•p2 + 2о•T•p + 1)•y = K• x;

W(p) = y/x = K/( T2•p2 + 2о•T•p + 1). (22)

С целью экономии времени в виду громоздкости вывода формулы для переходной характеристики приводим ее без вывода:

h(t) = K•[1 - (e-оt/T/r)•sin(rt/T + б)] (23)

Здесь: r = > 0 - условие наличия колебаний в звене;

б = arctg(r/о) - фазовый начальный угол;

r/(2рT) = f - частота затухающих колебаний звена.

Весовую функцию g(t) колебательного звена можно найти, взяв производную от переходной функции h(t):

g(t) = h?(t) = (K/T)•e-оt/T•[(о/r)•sin(rt/T + б) - cos(rt/T + б)] (24)

Делись добром ;)