Методика расчета и оптимизации ячеек памяти низковольтовых последовательных ЭСППЗУ

дипломная работа

2.1 Элементы СППЗУ

В отличие от постоянных запоминающих устройств (ПЗУ) и однократно программируемых постоянных запоминающих устройств (ППЗУ), которые не допускают изменения однажды записанной информации, в стираемых ПЗУ информацию можно перезаписывать многократно. Стирание информации производится с помощью ультрафиолетового облучения. Длительность хранения записанной информации может доходить до нескольких лет и более. Поэтому стираемые ПЗУ часто называют энергонезависимой памятью (памятью с сохранением информации при выключении электропитания). Существует много различных типов стираемых ПЗУ незначительно отличающихся принципами действия и структурой, причем каждый тип имеет свои разновидности.

Электрически программируемые ПЗУ (ЭППЗУ) не требуют для стирания информации ультрафиолетового облучения. Запись и удаление информации из запоминающего элемента производится с помощью приложения высокого напряжения. Примером ЭППЗУ является структура с плавающим затвором и туннельным переходом (ПЛТМОП). В таких ПЗУ информация стирается электрически последовательно бит за битом.

В настоящее время моделирование и оптимизация конструкции ЭСППЗУ осложнено отсутствием модели запоминающего элемента, основой которого является участок с туннельным окислом. Для модели требуется создание схемы замещения этого участка на основе анализа элементной базы низковольтовых ЭСППЗУ, а также методики расчета и оптимизации конструкции ячейки.

В случае хранения лог. 1 на плавающем затворе существует отрицательный заряд электронов и пороговое напряжение по управляющему затвору, получается высоким (несколько вольт). Если хранится лог. О, то заряд на плавающем затворе равен нулю или положителен, тогда пороговое напряжение, низкое (или даже отрицательное). Так как токи утечки диэлектрика ничтожно малы, то время хранения, являющееся важным параметром элемента памяти, большое. По оценкам оно превышает 10 лет при повышенной температуре (70...100С), когда токи утечки максимальны.

В режиме считывания на шину выбранной строки подают напряжение, лежащее в пределах порогового, а на шины остальных строк -- напряжение, меньшее порогового, так что в элементах памяти этих строк транзисторы закрыты. В выбранной строке транзисторы будут открытыми или закрытыми в зависимости от хранимой информации. Следовательно, в шине выбранного столбца в случае хранения лог. 0 будет протекать ток, а в случае хранения лог. 1 ток равен О. Ток в шине столбца воспринимается усилителем считывания. Время считывания определяется значением тока, чувствительностью и быстродействием усилителя и других схем обслуживания. Оно того же порядка, что и в СБИС ОЗУ.

В режиме программирования напряжение на шине выбранного столбца устанавливается высоким (около 15..20 В), если необходимо создать отрицательный заряд на плавающем затворе (запрограммировать лог. 1). В противном случае это напряжение равно 0. Напряжение на шине выбранной строки также устанавливается высоким, причем большим напряжения программирования столбца. Программирование основано на инжекции горячих электронов в окисел у стокового конца канала. Они генерируются в сильном электрическом поле, высокая напряженность которого обусловлена малой длиной канала и большим напряжением программирования. Число инжектированных электронов пропорционально току канала, составляющему несколько миллиампер. Так как напряжение на управляющем затворе выше, чем на стоке, в диэлектрике существует вертикальная составляющая вектора напряженности электрического поля, благодаря которой инжектированные в окисел электроны дрейфуют к плавающему затвору и накапливаются на нем. Ток через диэлектрик очень мал (единицы пикоампер), поэтому время программирования одного элемента памяти весьма велико (около 1 мс) и на 4 порядка превышает время считывания.

Стирание (удаление электронов с плавающего затвора) производится облучением кристалла ультрафиолетовым светом, для чего в корпусе микросхемы предусматривается окно с кварцевым стеклом. Под действием света электроны приобретают энергию, достаточную для перехода с плавающего затвора в диоксид. Далее они дрейфуют в подложку, потенциал которой должен быть выше, чем на управляющем затворе. Время стирания порядка 1 мин. Для проведения этой операции микросхема должна быть извлечена из устройства и поставлена в специальную установку стирания, что практически не всегда удобно, причем стирается содержимое всего накопителя.

В каждом цикле перепрограммирования происходят небольшие изменения в физической структуре элемента. Протекание токов через диоксид приводит к захвату в нем электронов ловушками и образованию дополнительного поверхностного заряда. Установлено, что после большого числа циклов разность порогового напряжения 0 и 1 уменьшается. Поэтому существует максимально допустимое число циклов перепрограммирования (около 103).

Достоинством рассмотренного элемента является его простота и малая площадь (6...10 литографических квадратов). Это позволяет создавать СБИС большой информационной емкости (1 Мбит и выше).

Делись добром ;)