Пространство состояний системы автоматического управления
Система автоматического управления в каждый момент времени характеризуется состоянием объекта управления, т.е. значениями выходной величины объекта управления. Поскольку управляемая величина постоянно изменяется вследствие протекающих в системе управления процессов, то для полной характеристики состояния объекта управления необходимо знать не только значение управляемой величины, но и скорость её изменения в данный момент, ускорение изменения и производные более высокого порядка, если они существуют.
Следовательно, состояние системы автоматического управления в конкретный момент времени можно описать значениями производных управляемой величины (включая нулевую производную, т.е. саму управляемую величину)
.
Каждую из производных можно рассматривать в качестве самостоятельной характеристики состояния системы:
, тогда состояние системы опишется значениямиn переменных величин. При изменении состояния системы все эти величины также изменяются. Следовательно, появляется возможность описания состояния системы автоматического управления вектором.
ВекторYполучил название –вектор состояния системы. Координаты вектора состоянияявляютсяфазовыми координатами системы. Графически вектор состояния системы можно изобразить в виде отрезка вn-мерном пространстве (рис. 21). Этоn-мерное пространство рассматривается какпространство состоянийсистемы автоматического управления, илифазовое пространство. Текущее состояние системы в фазовом пространстве отобразится точкойМ, соответствующей концу вектора состояния.
Точка Мназывается изображающей точкойсистемы. Когда в системе происходит процесс, вектор состояния системы изменяется и изображающая точкаМперемещается в фазовом пространстве. След изображающей точки (годограф вектора состояния) называетсяфазовой траекторией системы. Фазовая траектория отображает процессы, происходящие в системе, и, следовательно, по виду фазовой траектории можно судить об особенностях поведения системы автоматического управления.
При использовании пространства состояний систему автоматического управления можно описать системой из nдифференциальных уравнений первого порядка, имеющих вид:
. Если из этих уравнений исключить время, то получится уравнение фазовой траектории, которое будет иметь порядок меньший, чем исходное дифференциальное уравнение системы, что упрощает её исследование.
- А.В. Федотов теория автоматического управления
- Список сокращений
- Основы теории автоматического управления Введение
- Примеры систем автоматического управления Классический регулятор Уатта для паровой машины
- Система регулирования скорости вращения двигателей
- Автоматизированный электропривод
- Система терморегулирования
- Следящая система автоматического управления
- Система автоматического регулирования уровня
- Обобщённая структура автоматической системы
- Принципы автоматического управления
- Математическая модель автоматической системы
- Пространство состояний системы автоматического управления
- Классификация систем автоматического управления
- Структурный метод описания сау
- Обыкновенные линейные системы автоматического управления Понятие обыкновенной линейной системы
- Линеаризация дифференциального уравнения системы
- Форма записи линеаризованных дифференциальных уравнений
- Преобразование Лапласа
- Свойства преобразования Лапласа
- Пример исследования функционального элемента
- Передаточная функция
- Типовые воздействия
- Временные характеристики системы автоматического управления
- Частотная передаточная функция системы автоматического управления
- Частотные характеристики системы автоматического управления
- Типовые звенья
- 5. Дифференцирующее звено.
- Неустойчивые звенья
- Соединения структурных звеньев
- Преобразования структурных схем
- Передаточная функция замкнутой системы автоматического управления
- Передаточная функция замкнутой системы по ошибке
- Построение частотных характеристик системы
- Устойчивость систем автоматического управления Понятие устойчивости
- Условия устойчивости системы автоматического управления
- Теоремы Ляпунова об устойчивости линейной системы
- Критерии устойчивости системы Общие сведения
- Критерий устойчивости Гурвица
- Критерий устойчивости Найквиста
- Применение критерия к логарифмическим характеристикам
- Критерий устойчивости Михайлова
- Построение области устойчивости системы методом d-разбиения
- Структурная устойчивость систем
- Качество системы автоматического управления Показатели качества
- Точность системы автоматического управления Статическая ошибка системы
- Вынужденная ошибка системы
- Прямые методы анализа качества системы Аналитическое решение дифференциального уравнения
- Решение уравнения системы операционными методами
- Численное решение дифференциального уравнения
- Моделирование переходной характеристики
- Косвенные методы анализа качества Оценка качества по распределению корней характеристического полинома системы
- Интегральные оценки качества процесса
- Оценка качества по частотным характеристикам Основы метода
- Оценка качества системы по частотной характеристике
- Оценка колебательности системы
- Построение вещественной частотной характеристики
- Оценка качества сау по логарифмическим характеристикам
- Синтез системы автоматического управления Постановка задачи синтеза системы
- Параметрический синтез системы
- Структурный синтез системы Способы коррекции системы
- Построение желаемой логарифмической характеристики системы
- Синтез последовательного корректирующего звена
- Синтез параллельного корректирующего звена
- Другие методы синтеза систем автоматического управления
- Реализация систем автоматического управления Промышленные регуляторы
- Особенности реализации промышленных регуляторов
- Настройка промышленных регуляторов
- Управление по возмущению
- Комбинированное управление
- Многосвязные системы регулирования
- Обеспечение автономности управления
- Библиографический список
- Предметный указатель