Последовательная передача данных
Для последовательной передачи цифровых данных существует три формы связи:
А) симплексная связь предполагает наличие одного передатчика и одного приемника; информация передается в одном направлении, связь осуществляется через отдельную пару проводов;
Б) полудуплексная связь допускает двунаправленную передачу данных, но не одновременно; связь осуществляется по кабелю, состоящему из двух или четырех проводов;
В) дуплексная связь обеспечивает одновременную двунаправленную передачу данных, а связь осуществляется также по кабелю, состоящему из двух или четырех проводов.
Для каждой из указанных выше форм связи необходимо, чтобы приемное устройство было готово принять и идентифицировать каждый набор данных, переданный передатчиком. Существуют два способа решения этой задачи. При асинхронной передаче каждому пакету данных предшествует старт-бит, а по окончании передачи этого пакета данных следует стоп-бит. Таким образом, приемник четко определяет начало и конец сообщения. Однако из-за необходимости постоянной проверки старт- и стоп-битов скорость передачи при данном виде связи ограничена и, как правило, не превышает 1200 бит/с.
Асинхронная передача используется в условиях неуверенного приема и высокого уровня помех. Синхронная передача не требует старт- и стоп-битов, передатчик и приемник синхронизированы. Начало приема-передачи данных предварительно синхронизируется синхроимпульсом, а затем каждое слово пакета данных распознается как блок из семи или восьми бит. Синхронная передача данных может обеспечивать скорость более 1200 бит/с и наиболее часто применяется для передачи таких потоков данных, как программные файлы.
Современные интеллектуальные датчики и элементы управления наряду с традиционным интерфейсом RS-232C могут иметь также в своем составе подсистему последовательного ввода-вывода на базе интерфейса RS-485. Программируемые логические контроллеры большинства производителей в качестве средств организации территориально-распределенных систем сбора данных и управления содержат ту или иную реализацию интерфейсов RS-422А/RS-485.
RS-232C — широко распространенный стандартный последовательный интерфейс. Он может быть использован для синхронной передачи данных со скоростью до 20 000 бит/с на расстояние до 15 метров; на более длинные дистанции скорость передачи уменьшается. интерфейс RS-449 – это более поздний стандарт, он обладает улучшенными по сравнению с RS-232 характеристиками по скорости и расстоянию передачи; здесь достижима скорость до 10 000 бит/с на расстояние до 1 км. Уровни напряжения, соответствующие стандарту RS-232, составляют +12 В для логического “0“ и —12 В для логической “1“. интерфейс RS-232 является в настоящее время стандартным для СОМ-портов персональных компьютеров. Поскольку подавляющее большинство микропроцессоров построено на ТТЛ-структуре (транзисторно-транзисторная логика), где уровень логического нуля составляет 0 В, а логической единицы +5 В, то, очевидно, что уровни сигналов необходимо преобразовывать для согласования. Последнее достигается использованием интегральных микросхем — преобразователей уровня, таких как: МС1488 для преобразования ТТЛ-уровней в уровни RS-232 и МС1489 для преобразования уровней RS-232 в ТТЛ-уровни.
Интерфейс RS-485 (EIA—485) – один из наиболее распространенных стандартов физического уровня связи (канал связи + способ передачи сигнала).
Сеть, построенная на интерфейсе RS-485, представляет собой приемопередатчики, соединенные при помощи витой пары – двух скрученных проводов. В основе интерфейса RS-485 лежит принцип дифференциальной (балансной) передачи данных. Суть его заключается в передаче одного сигнала по двум проводам. Причем по одному проводу (условно A) идет оригинальный сигнал, а по другому (условно B) – его инверсная копия. Другими словами, если на одном проводе логическая "1", то на другом "0" и наоборот. Таким образом, между двумя проводами витой пары всегда есть разность потенциалов (рис. 3.1).
Рис. 3.1. Разность потенциалов
Такой способ передачи обеспечивает высокую устойчивость к синфазной помехе, действующей на оба провода линии одинаково. Если сигнал передается потенциалом в одном проводе относительно общего, как в RS-232, то наводки на этот провод могут исказить сигнал относительно хорошо поглощающего наводки общего («земли»). Кроме того, на сопротивлении длинного общего провода будет падать разность потенциалов общих точек как дополнительный источник искажений. При дифференциальной передаче таких искажений не происходит, поскольку в витой паре наводка на оба провода одинакова. Таким образом, потенциал в одинаково нагруженных проводах изменяется одинаково, при этом информативная разность потенциалов остается без изменений.
Аппаратная реализация интерфейса — микросхемы приемопередатчиков с дифференциальными входами/выходами (к линии) и цифровыми портами (к портам UART-контроллера). Существуют два варианта такого интерфейса: RS-422 и RS-485.
RS-422 — дуплексный интерфейс. Прием и передача обеспечиваются по двум отдельным парам проводов. На каждой паре проводов может быть только по одному передатчику.
RS-485 — полудуплексный магистральный аналог интерфейса RS-422. Прием и передача выполняются по одной паре проводов с разделением во времени. В сети может быть много передатчиков, так как они могут отключаться в режиме приема.
Все устройства подключаются к одной витой паре одинаково: прямые выходы (A) к одному проводу, инверсные (B) - к другому.
Входное сопротивление приемника со стороны линии обычно составляет 12 кОм. Поскольку мощность передатчика не беспредельна, это создает ограничение на количество приемников, подключенных к линии. Согласно стандарта RS-485, c учетом согласующих резисторов, передатчик может вести до 32 приемников. Однако, применяя микросхемы с повышенным входным сопротивлением, можно подключать к линии значительно большее количество устройств (более 100 приборов). При этом приборы подключаются к линии параллельно, а контроллер (компьютер) должен быть снабжен дополнительным устройством — преобразователем последовательного порта RS-485/ RS-232 .
Максимальная скорость связи в RS-485 может достигать 10 Мбит/сек, а максимальная длина линии связи — 1200 м. Если необходимо организовать связь на расстоянии, превышающем 1200 м, или подключить большее число устройств, нежели допускает нагрузочная способность передатчика, то применяют специальные повторители (репитеры).
Диапазон напряжений логических “1“ и “0“ в передатчика RS-485 составляют, соответственно, +1,5...+6 В и —1,5...-6 В, а диапазон синфазного напряжения передатчика — (—1...+3 В).
Значения параметров определены таким образом, что любое устройство, входящее в состав измерительной информационной системы, сохраняет работоспособность при наличии на его клеммах, подключенных к линии связи, помехи общего вида, напряжение которой находится в диапазоне от —7 до +7 В.
Ниже приведены ограничения на длину линии (L) и максимальную скорость передачи данных (V) для стандартов RS-422 и RS-485.
Таблица 3.2. Ограничения на длину линии и скорость передачи данных для стандартов RS-422 и RS-485
RS-422 | RS-485 | ||
L = 12 м | V = 10 Мбит/с | L = 12 м | V = 10 Мбит/с |
L = 120 м | V = 1 Мбит/с | L = 120 м | V = 1 Мбит/с |
L = 1200 м | V = 100 Кбит/с | L = 1200 м | V = 100 Кбит/с |
- Департамент образования и молодежной политики
- Оглавление
- Предисловие
- 1. Введение. Классификация элементов систем автоматики Основные понятия и определения
- Обзор развития, современное состояние и значение элементов и технических средств автоматики
- Основные принципы управления и регулирования
- 2. Типовые структуры и средства асу тп Обобщенная блок-схема асу тп. Комплекс типовых функций
- Локальные системы контроля, регулирования и управления
- Автоматизированные системы управления технологическими процессами
- Принципы функциональной и топологической децентрализации
- 3. Типизация, унификация и агрегатирование средств асу тп Основные сведения
- Унифицированные сигналы устройств автоматизации
- Последовательная передача данных
- Параллельная передача данных
- Агрегатные комплексы
- 4. Функциональные схемы автоматизации Общие сведения
- Изображение технологического оборудования и коммуникаций
- Примеры построения условных обозначений приборов и средств автоматизации на функциональных схемах
- Позиционные обозначения приборов и средств автоматизации
- Примеры выполнения функциональных схем автоматизации
- Последовательность чтения функциональных схем автоматизации
- 5. Автоматические регуляторы систем автоматики Общие сведения
- Структурные схемы автоматических регуляторов
- 6. Электронные элементы систем автоматики Электронные компоненты
- Резисторы
- Конденсаторы
- Катушки индуктивности
- Полупроводниковые диоды
- Биполярные транзисторы
- Полупроводниковые тиристоры
- Программируемые логические контроллеры
- 7. Электромагнитные устройства автоматики Электромагниты
- Электромагнитные реле
- Типовые релейные схемы
- Синтез и минимизация дискретных схем логического управления
- 8. Выбор элементов систем автоматики Общие сведения
- Выбор промышленных приборов и средств автоматизации
- 9. Трансформаторы Принцип действия и конструкция
- Основные режимы работы и соотношения в трансформаторе
- 10. Измерительные преобразователи Общие сведения
- Основные характеристики датчиков систем автоматики
- 11. Датчики температуры Общие сведения
- Манометрические термометры
- Термометры сопротивления
- Термоэлектрические преобразователи
- 12. Датчики угловых перемещений Общие сведения
- Шифраторы углового перемещения (положения)
- 13. Датчики давления Общие сведения
- Классификация измерительных преобразователей давления
- Пружинные приборы
- Тензометрические измерительные преобразователи
- Пьезоэлектрические измерительные преобразователи
- 14. Датчики уровня жидкостей и сыпучих материалов Общие сведения
- Уровнемеры поплавковые, буйковые, акустические, ультразвуковые, радиоизотопные, емкостные, дифманометрические
- Датчики-реле уровня поплавковые, емкостные, индуктивные, радиоизотопные, фотоэлектрические, акустические, мембранные и работающие на принципе проводимости
- 15. Технические средства измерения и контроля углового перемещения Тахогенераторы. Общие сведения
- Синхронные тахогенераторы
- Асинхронные тахогенераторы
- Индукторные тахогенераторы
- 16. Технические средства измерения и контроля расхода материалов Общие сведения
- Объемные счетчики
- Скоростные счетчики
- Расходомеры переменного перепада давления (дроссельные расходомеры)
- Расходомеры обтекания
- Расходомеры переменного уровня
- Электромагнитные расходомеры
- 17. Технические средства измерения и контроля уровня среды Визуальные средства измерений уровня
- Поплавковые средства измерений уровня
- Буйковые средства измерений уровня
- Гидростатические средства измерений уровня
- Электрические средства измерений уровня
- Акустические средства измерений уровня
- Ультразвуковые средства измерений уровня
- Радарные средства измерений уровня
- Измерения уровня с помощью магнитных погружных зондов
- Вибрационные сигнализаторы уровня
- 18. Исполнительные механизмы и устройства систем автоматики Общие сведения
- Иу электрические, пневматические и гидравлические
- Электрические исполнительные устройства
- Основные характеристики эиу с электродвигателями
- Позиционные эиу
- 19. Управление вентильными преобразователями Классификация управляемых преобразователей
- Тиристорные преобразователи постоянного тока
- Импульсные преобразователи постоянного тока
- Коммутаторы переменного напряжения
- Непосредственные преобразователи частоты
- Инверторы напряжения
- 20. Электрические машины постоянного тока Общие сведения. Конструкция
- Машина постоянного тока независимого возбуждения. Режимы работы и механические характеристики
- Машина постоянного тока последовательного возбуждения. Режимы работы и механические характеристики
- 21. Электрические машины переменного тока Асинхронная машина переменного тока. Конструкция, режимы работы, механические характеристики
- Синхронная машина переменного тока. Конструкция, режимы работы, механические характеристики
- 22. Электрические микромашины Электрические микромашины постоянного тока
- Электрические микромашины переменного тока
- Шаговые и моментные двигатели
- Двигатели для микроперемещений
- Литература
- 628400, Россия, Ханты-Мансийский автономный округ,