1.4 Эталонная модель взаимодействия открытых систем
Обмен информацией в телекоммуникационных сетях осуществляться по определенным, заранее оговоренным правилам (стандартам). Эти правила разрабатываются рядом международных организаций.
Взаимодействие в современных телекоммуникационных сетях организуется в соответствии с эталонной моделью взаимодействия открытых систем (ЭВОС), которая была предложена в 1980 году Международной организацией по стандартизации МОС (ISO – International Organisation for Standartisation) для вычислительных сетей. Открытыми называются системы, использующие одинаковые протоколы взаимодействия. Протокол – набор правил, регламентирующих взаимодействие для обмена сообщениями между независимыми устройствами или процессами.
Общая проблема связи состоит из двух частей:
1) первая часть касается сети связи – данные, передаваемые по сети должны поступить по назначению в правильном виде и своевременно;
2) вторая часть – обеспечение распознавания данных для дальнейшего использования – функции оконечного оборудования пользователя.
Все задачи, решаемые для организации взаимодействия пользователей, разделены на семь групп – уровней эталонной модели (рисунок 1.7).
Рисунок 1.7 – Эталонная модель взаимодействия открытых систем
Три нижних уровня представляют услуги сети. Протоколы, реализующие эти уровни, должны быть предусмотрены в каждом узле сети. Четыре верхних уровня представляют услуги оконечным пользователям и связаны с ними, а не с сетью. Нижние уровни используются для того, чтобы направлять данные от одного пользователя к другому. Верхние уровни решают задачи представления данных пользователю в такой форме, которую он может распознать. Выбор семи уровней продиктован следующими соображениями:
1) необходимо иметь достаточно уровней, чтобы каждый из них не был слишком сложным с точки зрения разработки протокола;
2) желательно иметь не слишком много уровней, чтобы их интеграция и описания не стали слишком сложными;
3) желательно выбрать естественные границы, чтобы родственные функции были собраны на одном уровне.
В эталонной модели модуль уровня n взаимодействует с модулями только соседних уровней (n-1) и (n+1).
Уровни модели выполняют следующие функции:
1) Физический уровень обеспечивает передачу последовательности бит в виде сигналов определенной физической природы со скоростью, соответствующей пропускной способности канала.
2) Канальный уровень формирует блоки данных – кадры, осуществляет управление доступом к передающей среде, обнаруживает и исправляет ошибки.
3) Сетевой уровень реализует функцию маршрутизации. Блоки данных сетевого уровня называются пакетами.
Физический, канальный и сетевой уровни являются сетезависимыми, поэтому их функционирование меняется в зависимости от типа сети связи.
4) Транспортный уровень занимает центральное место в иерархии уровней, обеспечивает взаимодействие процессов в подключаемых оконечных устройствах и сквозное управление движением пакетов между этими процессами. Наличие этого уровня освобождает пользователей от необходимости изучения всех функций коммутации, маршрутизации и отбора (селекции) данных.
Четыре нижних уровня (физический, канальный, сетевой, транспортный) составляют транспортную сеть.
5) Сеансовый уровень обеспечивает поддержание диалога между процессами, выполняя функции по организации передачи данных и по синхронизации процедур взаимодействия (рисунок 1.8).
Рисунок 1.8 – Пример диалога в сети
6) Уровень представления обеспечивает интерпретацию данных. На этом уровне реализуется синтаксис (анализируется представление символов, формат страниц, кодирование и др.).
7) Прикладной уровень реализует функции, которые не могут быть приписаны предыдущим уровням. Протоколы прикладного уровня придают соответствующий смысл (семантику) обмениваемой информации. Прикладной уровень обеспечивает выполнение всех информационно-вычислительных процессов.
Многоуровневая организация взаимодействия порождает необходимость модификации информации на каждом уровне в соответствии с функциями уровня (рисунок 1.9).
Рисунок 1.9 – Взаимодействие уровней
При передаче на каждом уровне блок данных принимается от вышестоящего уровня, к данным добавляется управляющая информация и блок передается нижестоящему уровню. На приемном конце каждый уровень использует только соответствующий заголовок, не просматривая остальную часть принятого блока данных. Следовательно, уровни самостоятельны и изолированы друг от друга. Это позволяет удалять и заменять протоколы и программы отдельных уровней, не затрагивая остальную часть модели.
Многоуровневая организация обеспечивает независимость управления на уровне n от порядка функционирования нижних и верхних уровней:
- управление информационным каналом происходит независимо от физических принципов функционирования физического канала;
- управление сетью не зависит от способов обеспечения надежности информационного канала;
- транспортный уровень взаимодействует с сетью как с единой системой, обеспечивающей доставку сообщений пользователям;
- прикладной процесс создается только для выполнения определенных функций обработки данных без учета структуры сети, способов выбора маршрута, типа каналов связи и т.д.
Пользователи для организации взаимодействия опираются на службу взаимодействия. Взаимодействие между пользователями организуется средствами управления сеансами (уровень 5), которые работают на основе транспортного канала, обеспечивающего передачу сообщений в течение сеанса. Транспортный канал, создаваемый на уровне 4, включает в себя сеть связи, которая организует информационные каналы между пользователями (рисунок 1.10).
Рисунок 1.10 – Организация взаимодействия между пользователями
- Сети связи и системы коммутации Учебное пособие
- 210406 – Сети связи и системы коммутации
- Екатеринбург
- Содержание
- 2 Общие принципы построения телефонных сетей 25
- 2.5 Внутризоновые телефонные сети 33
- Введение
- 1 Основы построения телекоммуникационных сетей
- 1.1 Понятие системы и сети связи
- 1.2 Этапы развития сетей и их классификация
- 1.3 Основные способы построения телекоммуникационных сетей связи
- 1.4 Эталонная модель взаимодействия открытых систем
- 1.5 Методы коммутации в телекоммуникационных сетях
- Дейтаграммный (датаграммный),при котором пакеты движутся по сети независимо друг от друга любыми свободными маршрутами;
- Для коммутации пакетов присущи следующие фазы установления соединения:
- 1.6 Стандартизация в области телекоммуникаций
- Вопросы для самоконтроля
- 2 Общие принципы построения телефонных сетей
- 2.1 Общегосударственная система автоматической телефонной связи
- 2.2 Построение городских телефонных сетей (гтс)
- 2.2.3 Гтс с узлами входящих сообщений (увс)
- 2.2.4 Гтс с узлами исходящих (уис) и входящих сообщений (увс)
- Максимальная емкость сети 8000000 номеров. Экономически выгодная емкость 5-6 млн. Номеров.
- 2.3 Перспективы развития гтс
- 2.3.1 Стратегия перехода от аналоговых гтс к цифровым
- 2.3.2 Структура цифровых гтс
- 2.4 Построение сельских телефонных сетей (стс)
- 2.5 Внутризоновые телефонные сети
- 2.6 Организация междугородной сети
- Вопросы для самоконтроля
- 3 Абонентский доступ
- 3.1 Оконечные устройства тракта телефонной передачи
- 3.1.1 Характеристики речевых сигналов
- 3.1.2 Состав телефонного аппарата
- 3.1.3 Структурная схема кнопочного телефонного аппарата
- 3.2 Базовая структура сети абонентского доступа
- 3.2.1 Структура типовой абонентской сети
- 3.2.2 Базовая структура сети доступа
- Вопросы для самоконтроля:
- 4 Основы автоматической коммутации
- 4.1 Структура системы коммутации
- 4.2 Элементная база систем коммутации
- 4.3 Коммутационные поля
- 4.3.1 Структура коммутационного поля
- 4.3.2 Модель коммутационной системы
- 4.3.3 Управляющие устройства
- 5 Аналоговые системы коммутации
- 5.1 Координатные атс
- 5.1.1 Структура атск
- 5.1.2 Коммутационное оборудование
- 5.1.3 Управляющие устройства
- 5.2 Квазиэлектронные атс
- 5.2.1 Структура атскэ
- 5.2.2 Коммутационное оборудование
- 5.2.3 Управляющие устройства
- Вопросы для самоконтроля
- 6 Цифровые системы коммутации
- 6.1 Функциональная архитектура цск
- 6.1.1 Функциональная архитектура современной цск
- 6.1.2 Интерфейсы цск
- 6.1.3 Абонентские интерфейсы
- 6.1.4 Интерфейсы сети доступа
- 6.1.5 Сетевые интерфейсы
- 6.2 Структура цск
- 6.3 Оборудование доступа к цск
- 6.3.1 Модуль аналоговых абонентских комплектов
- 6.3.2 Цифровой абонентский доступ
- 6.4 Системы управления в цск
- 6.4.1 Классификация систем управления
- 6.4.2 Фазы работы управляющих устройств
- 6.5 Коммутационные поля цск
- 6.5.1 Виды цифровой коммутации
- 6.5.2 Особенности коммутационных полей цск
- 6.6 Программное обеспечение цск
- 6.6.1Понятие алгоритмического и программного обеспечения
- 6.6.2 Состав по цск
- 6.6.3Этапы проектирования по цск
- 6.6.4Основные принципы построения по цск
- 6.6.5 Структура данных по
- 6.7 Современные цск
- 6.7.4 Цск s-12 (Система 12)
- Вопросы для самоконтроля
- 7 Системы сигнализации в телекоммуникациях
- 7.1 Классификация протоколов сигнализации
- 7.2 Абонентская сигнализация
- 7.2.2 Передача номера абонента по абонентской линии
- 7.3 Системы межстанционной сигнализации
- 7.3.1 Классы систем межстанционной сигнализации
- 7.3.2 Сигнализация 2вск
- 7.3.3 Сигнализация токами тональных частот
- 7.3.4 Примеры протоколов сигнализации токами тональных частот
- 7.4 Общеканальная система сигнализации окс№7
- 7.4.1 Понятие и режимы работы окс№7
- 7.4.2 Передача сигнальных сообщений
- Вопросы для самоконтроля:
- 8 Основы теории телетрафика
- 8.1 Предмет и задачи теории телетрафика
- 8.2 Характеристики и свойства потоков вызовов
- 8.2.1 Основные понятия случайного процесса в системе массового обслуживания
- 8.2.2 Характеристики и свойства потоков вызовов
- 8.2.3 Длительность обслуживания вызовов
- 8.3 Характеристики систем обслуживания вызовов
- 8.4 Понятие телефонной нагрузки и ее виды
- Вопросы для самоконтроля
- 9 Сети подвижной связи
- 9.1 Характеристика сетей подвижной связи
- 9.2 Сотовые системы подвижной связи (сспс)
- 9.2.4 Методы множественного доступа
- Вопросы для самоконтроля
- 4 На какие виды делятся сспс по диапазону частот?
- 10 Основы документальной электросвязи
- 10.1 Сети телеграфной связи
- 10.1.1Виды телеграфных сетей
- 10.1.3 Сеть абонентского телеграфирования
- 10.2 Принципы организации факсимильной связи
- 10.2.1 Принцип факсимильной передачи сообщений
- 10.2.2 Организация факсимильной связи
- 10.2.3 Клиентская служба Бюрофакс
- 10.3 Система Видеотекст
- 10.3.1 Характеристика и услуги службы Видеотекст
- 10.3.2 Построение системы Видеотекст
- 10.4 Сети передачи данных
- 10.4.1 Классификация компьютерных сетей
- 10.4.2 Локальные сети
- 10.4.3 Телефонная связь в локальной сети
- 10.4.4 Глобальная связь в глобальной сети Интернет
- 10.5 Интеграция услуг документальной электросвязи
- 10.5.1 Единая система документальной электросвязи (есдэс)
- 10.5.2 Многофункциональные терминалы есдэс
- Микропроцессор выполняет следующие основные функции:
- Вопросы для самоконтроля
- 11 Тенденции развития телекоммуникационных сетей
- 11.1 Цифровая сеть с интеграцией обслуживания (цсио)
- 11.2 Интеллектуальная сеть
- 11.3 Конвергенция сетей
- 11.4 Концепция сетей связи следующего поколения ngn
- 11.4.1 Понятие инфокоммуникационных услуг
- 11.4.2 Понятие мультисервисной сети. Классификация услуг мультисервисной сети
- 11.4.3 Архитектура сетей связи следующего поколения
- 11.5 Управление телекоммуникационными сетями
- 11.5.1 Модель управления телекоммуникациями
- 11.5.2 Управление есэ рф
- Вопросы для самоконтроля:
- Список сокращений
- Литература
- Приложение 1
- Сети связи и системы коммутации Учебное пособие
- 620109, Екатеринбург, ул. Репина, 15