Спутниковые системы передачи
Принципы построения спутниковых систем передачи - ССП. Запуском 4 октября 1957 г. первого искусственного спутника Земли (ИСЗ) в Советском Союзе было положено начало освоению околоземного космического пространства. Одним из важнейших практических применений ИСЗ является космическая радиосвязь между земными станциями (ЗС), осуществляемая посредством ретрансляции сигналов через один или несколько ИСЗ связного назначения. Такая передача сигналов положена в основу спутниковых систем передачи, представляющих собой РРЛ с одной промежуточной станцией, размещенной на ИСЗ. При построении ССП используют идеи и принципы, реализуемые в РРЛ.
Спутниковые системы передачи обладают рядом существенных особенностей, отличающих их как от РРЛ прямой видимости, так и от дальних ТРРЛ. Так, функционирование ССП возможно при наличии ряда специальных подсистем. Ввиду этого ССП выделяют в самостоятельный вид систем передачи сообщений. Собственно ССП, называемая связной системой, включает в себя ряд подсистем:
1) космическую, в состав которой входит ракета-носитель и стартовый комплекс, обеспечивающую вывод ИСЗ на соответствующую орбиту;
2) командно-измерительную, имеющую земную и бортовую (установленную на спутнике) части, предназначенную для измерения параметров орбиты спутника и передачи с Земли команд управления;
3) телеметрическую, передающая часть которой находится на борту ИСЗ, а приемная на Земле, служащую для передачи данных о состоянии аппаратуры спутника, а также о прохождении команд управления.
По способу ретрансляции сигнала ССП делят на системы с пассивной и активной ретрансляцией.
Система, которая работает без бортовой аппаратуры, называется системой связи с пассивным спутником, или системой с пассивной ретрансляцией. В такой системе сигналы, посланные с Земли, отражаются поверхностью ИСЗ обратно без предварительного усиления. В качестве пассивных спутников могут использоваться как специальные отражатели различной формы (в виде сферических баллонов, объемных многогранников и др.), так и естественный спутник Земли - Луна.
При достаточном усилении земных приемных антенн и высокой чувствительности приемника земной станции (ЗС) этот метод радиосвязи находит применение в системах малой пропускной способности.
Система радиосвязи при наличии бортовой аппаратуры называется системой с активной ретрансляцией сигнала, или системой с активным спутником. При этом энергоснабжение бортового ретранслятора (БР) осуществляется от солнечных батарей, находящихся на ИСЗ. Активная ретрансляция является основной в современных ССП. Примерная структурная схема дуплексной связи между двумя земными станциями (ЗС) при активной ретрансляции сигнала приведена на рис. 17. Передаваемый в одном направлении сигнал U1 подводится к модулятору земной станции (Мод ЗС), в результате чего осуществляется модуляция несущей частоты f1. Эти колебания от передатчика земной станции (Пер ЗС) подводятся к антенне Ан1 и излучаются в направлении ИСЗ, где принимаются бортовой антенной БАн бортового ретранслятора (БР). Далее колебания с частотой f1 поступают на направляющие фильтры (НФ), усиливаются первым приемником бортового ретранслятора (1-й ПРБР), преобразуются в частоту f2 и поступают к первому передатчику бортового ретранслятора (1-й ПЕРБР). С выхода этого передатчика колебания с частотой f2 через НФ подводятся к бортовой антенне БАн и излучаются в сторону Земли. Эти колебания принимаются антенной Ан2 и подводятся к приемнику земной станции (Пр ЗС) и детектору земной станции (Дет ЗС), на выходе которого выделяется сигнал . Передача от противоположной ЗС сигнала U2 происходит на частоте f3 аналогичным образом, причем на бортовом ретрансляторе осуществляется преобразование колебаний с несущей частотой f3 в колебания с частотой f4.
Рис. 17. Структурная схема радиосвязи через ИСЗ
Земные станции соединяются с узлами коммутации сети связи, с источниками и потребителями типовых каналов и трактов, программ телевидения и звукового вещания с помощью наземных соединительных линий.
Очень распространенным и экономически выгодным является использование связных ИСЗ для организации ТВ и радиовещания. В настоящее время под спутниковым ТВ и радиовещанием понимается как передача ТВ сигналов (со звуковым сопровождением), так и радиовещательных звуковых сигналов от одного или нескольких земных передатчиков, связанных с центрами формирования ТВ и радиопрограмм, через ИСЗ на сеть земных приемных установок и распределение этих программ с целью доведения их до абонентов (телезрителей или радиослушателей) с помощью наземных средств связи (ретрансляторов различной мощности, систем кабельного телевидения - СКТВ, средств коллективного и индивидуального приема). Как правило, в зоне обслуживания связным ИСЗ располагается сеть приемных ЗС различных типов.
В зависимости от типа ЗС и назначения систем спутниковой связи различают следующие службы радиосвязи:
фиксированная спутниковая служба (ФСС) - служба радиосвязи между ЗС, расположенными в определенных фиксированных пунктах, при использовании одного или нескольких спутников;
подвижная спутниковая служба - между подвижными ЗС с участием одного или нескольких ИСЗ;
радиовещательная спутниковая служба (РВСС) - служба радиосвязи, в которой сигналы спутниковых ретрансляторов предназначены для непосредственного приема населением. При этом непосредственным считается как индивидуальный, так и коллективный прием на сравнительно простые и недорогие установки с соответствующим качеством.
Орбиты связных искусственных спутников Земли - это траектории движения ИСЗ в пространстве. Они определяются многими факторами, основным из которых является притяжение спутника Землей.
Ряд других факторов: торможение спутника в атмосфере Земли, влияние Луны, Солнца, планет и т.д. - также оказывает влияние на орбиту спутника. Это влияние весьма мало и учитывается в виде так называемого возмущения орбиты спутника, т.е. отклонения истинной траектории от идеальной, вычисленной в предположении, что спутник движется только под действием притя-
жения к Земле. Поскольку Земля является телом сложной формы с неравномерным распределением массы, то вычислить идеальную траекторию сложно. В первом приближении считают, что спутник движется в поле тяготения шарообразной Земли со сферически-симметричным распределением массы. Такое поле тяготения называется центральным.
Основные параметры, характеризующие движение ИСЗ, могут быть определены с помощью законов Кеплера.
Применительно к спутникам Земли законы Кеплера формулируются следующим образом:
Первый закон Кеплера: орбита спутника Земли лежит в неподвижной плоскости, проходящей через центр Земли, и является эллипсом, в одном из фокусов которого находится центр Земли.
Второй закон Кеплера: радиус-вектор спутника (отрезок прямой, соединяющий спутник, находящийся на орбите, и центр Земли) в равные промежутки времени описывает равные площади.
Третий закон Кеплера: отношение квадратов периодов обращения спутников равно отношению кубов больших полуосей орбит.
В системах связи могут использоваться ИСЗ, движущиеся по орбитам, которые отличаются следующими параметрами: формой (круговая или эллиптическая); высотой над поверхностью Земли Н или расстоянием от центра Земли; наклонением, т.е. углом φ между экваториальной плоскостью и плоскостью орбиты. В зависимости от выбранного угла φ орбиты подразделяются на экваториальные (φ = 0), полярные (φ= 90°) и наклонные (0 < φ< 90°). Эллиптические орбиты, кроме того, характеризуются апогеем и перигеем, т.е. расстояниями от Земли, соответственно, до наиболее удаленной и до ближайшей точки орбиты. Апогей и перигей орбиты являются концами большой оси эллипса, а линия, на которой они находятся, называется осью апсид. При высоте орбиты 35 800 км период обращения ИСЗ будет равен земным суткам. Экваториальная круговая орбита с высотой 35 800 км при условии, что направление движения спутника совпадает с направлением вращения Земли относительно своей оси (с запада на восток), называется геостационарной орбитой (ГСО). Такая орбита является универсальной и единственной. Спутник, находящийся на ней, будет казаться земному наблюдателю неподвижным. Подобный ИСЗ называется геостационарным. В действительности ИСЗ, математически точно запущенный на ГСО, не остается неподвижным, а из-за эллиптичности Земли и по причине возмущения орбиты медленно уходит из заданной точки и совершает периодические (суточные) колебания по долготе и широте. Поэтому на ИСЗ должна быть установлена система автоматической стабилизации и удержания его в заданной точке ГСО.
Большинство современных ССП базируется на геостационарных спутниках. Однако в некоторых случаях представляет интерес сильно вытянутые эллиптические орбиты, имеющие такие параметры: угол наклонения φ = 63,5°, высота в апогее примерно 40 000 км, в перигее около 500 км. Для России с ее обширной территорией за Полярным кругом такая орбита является весьма удобной. Спутник, выведенный на нее, вращается синхронно с Землей, имеет период обращения 12 ч и, совершая за сутки два полных витка, появляется над одними и теми же районами Земли в одно и то же время. Длительность сеанса связи между ЗС, находящимися на территории России, при этом составляет 8 ч. Для обеспечения круглосуточной связи приходится выводить на эллиптические орбиты, плоскости которых взаимно смещены, 3...4 спутника, образующих систему спутников.
В последнее время наметилась тенденция использования связных ИСЗ, находящихся на низких орбитах (расстояние до Земли в пределах 700... 1500 км). Системы связи с использованием ИСЗ на низких орбитах благодаря значительно меньшему (практически в 50 раз) расстоянию от Земли до спутника имеют ряд преимуществ перед ССП на геостационарных спутниках. Во-первых, это меньшее запаздывание и затухание передаваемого сигнала, а во-вторых, более простой вывод ИСЗ на орбиту. Основным недостатком подобных систем является необходимость выведения на орбиту большого количества спутников для обеспечения длительной непрерывной связи. Это объясняется небольшой зоной видимости отдельного ИСЗ, что усложняет связь между абонентами, находящимися на большом расстоянии друг от друга. Например, космический комплекс «Indium» (США) состоит из 66 космических аппаратов, размещенных на круговых орбитах с наклонением φ = 86° и высотой 780 км. Спутники размещаются в орбитальных плоскостях, в каждой одновременно находятся 11 спутников. Угловое расстояние между соседними орбитальными плоскостями составляет 31,6°, за исключением 1-й и 6-й плоскостей, угловой разнос между которыми около 22°.
Антенная система каждого ИСЗ формирует 48 узких лучей. Взаимодействие всех ИСЗ обеспечивает глобальное покрытие Земли услугами связи. В нашей стране ведутся работы по созданию собственных низкоорбитальных спутниковых систем связи «Сигнал» и «Гонец».
Для уяснения особенностей работы низкоорбитальных спутниковых систем рассмотрим схему прохождения в ней сигналов (рис. 18). В этом случае на каждой ЗС должны быть установлены две антенны (А1 и А2), которые могут осуществлять передачу и прием сигналов с помощью одного из спутников, находящегося в зоне взаимной связи. На рис. 18 показаны ИСЗ, движущиеся по часовой стрелке по одной низкой орбите, часть которой показана в виде дуги mn. Рассматриваемая система спутниковой связи работает следующим образом. Сигнал от 3С1 через антенну А1 поступает на ИС34 и ретранслируется через ИС33, ИС32, ИС1, к приемной антенне А1, ЗС2. Таким образом, в этом случае для ретрансляции сигнала используются антенны А1 и сегмент орбиты, содержащий ИС34 ИСЗ1. При выходе ИС34 из зоны, лежащей левее линии горизонта аа', передача и прием сигнала будут вестись через антенны А2 сегмент орбиты, содержащий ИС35...ИС32и т.д.
Рис. 18. Система связи с несколькими ИСЗ на низкой орбите
Поскольку каждый ИСЗ может наблюдаться с достаточно большой территории на поверхности Земли, то можно осуществить связь между несколькими ЗС через один общий связной ИСЗ. В этом случае спутник оказывается «доступным» многим ЗС, поэтому такая система называется системой спутниковой связи с многостанционным доступом.
Использование ИСЗ, движущихся по орбите с малой высотой, упрощает аппаратуру ЗС, так как при этом возможно снижение усиления земных антенн, мощности передатчиков и работа с приемниками меньшей чувствительности, чем в случае геостационарных спутников. Однако в этом случае усложняется система управления движением большого числа ИСЗ по орбите.
В стадии разработки находится система связи на основе низкоорбитальных 840 связных спутников, оснащенных сканирующими антенными системами с высоким коэффициентом усиления, покрывающих всю поверхность Земли сетью из 20 000 больших зон обслуживания, каждая из которых будет состоять из 9 малых зон. Спутники будут связаны с наземной телекоммуникационной сетью посредством высокопроизводительных ЗС. Однако и сами низкоорбитальные спутники связи сформируют независимую сеть, где каждый из них будет обмениваться данными с девятью соседями, используя высококачественные каналы межспутниковой связи. Эта иерархическая структура должна сохранить работоспособность при отказах отдельных спутников, при локальных перегрузках и выводе из строя части средств связи с наземной инфраструктурой.
Передача сигналов в ССП. В отличие от других систем передачи, работающих в диапазоне СВЧ, в спутниковых системах радиосигнал преодолевает значительные расстояния, что определяет ряд особенностей, к которым относят допплеровский сдвиг частоты, запаздывание сигнала, нарушение непрерывности значений запаздывания и доплеровского сдвига частоты.
Известно, что относительное перемещение источника сигнала с частотой f со скоростью vp « с вызывает доплеровский сдвиг ∆fdon = ± fvp / с, где с - скорость распространения электромагнитных колебаний; знак «+» соответствует уменьшению расстояния между источником сигнала и приемником сигнала, а «-» - увеличению.
При передаче модулированных колебаний частота каждой спектральной составляющей изменяется в 1 + (vр/c) раз, т.е. составляющие с более высокой частотой получают большее изменение частоты, а с более низкой частотой - меньшее. Таким образом, эффект Доплера приводит к переносу спектра сигнала на значение ∆fdon и к изменению масштаба спектра в 1 + (Vp/c) раз, т.е. к его деформации.
Для геостационарных спутников доплеровский сдвиг незначителен и не учитывается. Для сильно вытянутых эллиптических орбит (орбит типа «Молния») максимальное значение доплеровского сдвига для линии вниз в полосе 4 ГГц составляет 60 кГц, что приводит к необходимости компенсировать его, например, по заранее рассчитанной программе. Сложнее компенсировать деформации спектра. Для этого могут быть применены устройства либо с переменной управляемой задержкой группового или СВЧ сигнала, изменяемой по программе, либо управляющие частотами группового преобразования каналообразующей аппаратуры систем передачи с частотным разделением каналов.
Принципы построения спутниковых систем передачи с многостанционным доступом. Ретрансляторы, устанавливаемые на связных спутниках, как и в РРСП прямой видимости, представляют собой многоствольные приемопередающие устройства. Число стволов в современных ССП может достигать 24 и более. При этом, как правило, используется вся выделенная полоса частот в данном диапазоне. При передаче сигналов разных ЗС по разным стволам обычно никаких проблем не возникает. Если же передаются сигналы различных ЗС по одному стволу ретранслятора, то такое использование стволов называется многстанционным доступом (МД). Он позволяет создать сеть связи, в которой один ствол спутникового ретранслятора дает возможность одновременно организовать как магистральные одно- и многоканальные системы передачи с центральной станцией, так и системы связи типа «каждый с каждым». В спутниковых системах в отличие от наземных многоканальных систем групповой сигнал образуется земными станциями непосредственно на входе ретранслятора, причем в диапазоне СВЧ.
Основные требования к системе МД следующие: эффективное использование мощности ретранслятора и максимальное - полосы частот ретранслятора; допустимый уровень переходных помех; гибкость системы.
Чтобы МД соответствовал этим требованиям, необходимо найти ансамбль ортогональных или близких к ортогональным сигналов. Известны три способа формирования такого ансамбля, основанные на разделении сигналов по частоте, времени и форме. В соответствии с этими способами различают следующие виды МД: с частотным разделением сигналов (МДЧР); с разделением сигналов по времени (МДВР); с разделением сигналов по форме (МДРФ). Находят применение разновидности и комбинации этих способов.
Много станционный доступ с частотным разделением сигналов. При МДЧР каждый сигнал ЗС имеет определенный участок общего группового СВЧ спектра частот. Все они передаются одновременно, а групповой сигнал, проходящий через ретранслятор спутника, образуется из сигналов не только отдельных каналов (например, тональной частоты), но и из групп каналов. При этом возможно использование различных видов модуляции. Спектр группового сигнала с МДЧР приведен на рис. 19. Здесь на каждой ЗС сигнал, образованный одним или группой каналов, разнесенных по частоте, модулирует свою несущую fH. При определенных значениях несущих на входе ретранслятора в пределах полосы ствола ∆fp в диапазоне СВЧ образуется групповой сигнал. Значения несущих частот и девиация частоты выбираются такими, чтобы между спектрами сигналов оставались защитные интервалы ∆f3 для уменьшения взаимных помех между сигналами. Передача сигналов при МДЧР приводит к снижению общей выходной мощности ретранслятора, взаимному подавлению сигналов, появлению переходных помех из-за нелинейности амплитудной характеристики ретранслятора и из-за наличия в ретрансляторе элементов, преобразующих амплитудную модуляцию в фазовую.
Рис.19. Спектр группового сигнала с МДЧР
Эффективность МДЧР существенно падает по сравнению с односигнальным режимом. Так, при передаче через ретранслятор сигналов от 10 ЗС можно пропустить только 10 каналов тональной частоты (КТЧ) на каждой несущей, т.е. всего 100 КТЧ, а при наличии 55 ЗС на каждой несущей можно передать только один КТЧ.
Достоинства МДЧР состоит в простоте аппаратуры и ее совместимости с большей частью эксплуатируемой аппаратуры канального преобразования.
Разновидностью МДЧР является многостанционный доступ типа «несущая на канал», представляющей комбинацию способов передачи сигналов, при котором учитывается статистика многоканального сообщения в системах с незакрепленными каналами.
Поскольку активность КТЧ составляет 25...30 % времени, в течение которого он занят, то, выключая несущие колебания в паузах разговора, можно уменьшить среднестатистическую загрузку ретранслятора сигналами ЗС либо при той же загрузке увеличить число ЗС в системе. В системах с выключением несущих возможно увеличение их эффективности в 3 раза при использовании ЧМ несущих, при использовании других видов можно еще более увеличить эффективность системы МД.
Система, в которой сигнал каждого КТЧ передается на отдельной несущей, получил название несущая на канал. Эта система отличается тем, что выделение канала и установление связи между парой абонентов требует наличия служебного канала и системы управления со специально выделенной для этой цели управляющей ЗС.
Многостанционный доступ с разделением сигналов во времени. Интенсивное развитие цифровых систем передачи привело к созданию систем с МДВР. В таких системах каждой ЗС для излучения сигналов выделяется определенный, периодически повторяемый интервал времени, длительность которого определяется трафиком станции. Интервал времени, в течение которого все станции сети по одному разу излучают сигнал, называется кадром, а длительность пакета импульсов, излучаемых одной станцией, называется субкадром.
Интервалы времени излучения всех ЗС должны быть взаимно синхронизированы, чтобы не перекрывались сигналы. Для этого часть пропускной способности ствола отводится для передачи сигналов кадровой (цикловой) синхронизации.
В большинстве случаев применяется сигнал синхронизации в виде отдельного специализированного пакета - сигнал выделенной синхронизации. При этом синхросигналы всех ЗС передаются в кадре на фиксированных временных позициях отдельно от информационных пакетов. Структура и длительность кадровых синхросигналов постоянны, в то время как расположение и длительность информационных пакетов могут изменяться в соответствии с трафиком ЗС.
При МДВР ретранслятор рассчитывается на мощность, близкую к максимальной, так как в каждый момент времени через него проходит сигнал только одной ЗС и отсутствуют переходные помехи, являющиеся одной из основных причин снижения пропускной способности системы.
На рис. 20 показан пример кадра системы с МДВР. Из рисунка следует, что, эффективность использования полосы пропускания ствола для МДВР определяется необходимостью введения определенных защитных интервалов времени t3, гарантирующих отсутствие перекрытия сигналов при неустойчивой работе межстанционной синхронизации, а также необходимости введения ряда дополнительных сигналов, в том числе сигналов синхронизации. В соответствии с этим эффективность системы с МДВР равна
Ткс- длительность сигнала кадровой синхронизации; Тсс- длительность сигнала субкадровой синхронизации;TK длительность кадра; п - число каналов системы. Из этой формулы следует, что для повышения эффективности системы целесообразно увеличить длительность кадра, уменьшить длину и число защитных интервалов, повышать точность синхронизации. Поскольку длительность кадров для речевой связи определяется теоремой Котельникова -Найквиста и, следовательно, максимальной частотой передаваемого сигнала (так, для КТЧ обычно применяется Тк = 125 мкс), то для увеличенияТк необходимо ввести буферную память, в результате чего увеличивается задержка передаваемой информации. С целью уменьшения емкости буферной памяти для передачи информации данной станции может быть предоставлено несколько субкадровых интервалов, равно расположенных в кадре. При этом неизбежны потери в пропускной способности из-за увеличения числа защитных интервалов.
Рис. 20. Структура кадров системы с МДВР
- Основы построения телекоммуникационных систем и сетей
- Предисловие
- Введение
- Лекция 1
- Основные понятия и определения
- Основные понятия и определения. Классификация систем электросвязи
- Вопросы и задачи для самоконтроля
- Лекция 2 Первичные сигналы электросвязи Первичные сигналы электросвязи и их физические характеристики
- Сигналы передачи данных и телеграфии
- Вопросы и задачи для самоконтроля
- Лекция 3 Каналы передачи Каналы передачи, их классификация и основные характеристики
- Типовые каналы передачи
- Вопросы и задачи для самоконтроля
- Лекция 4 Двусторонние каналы Построение двусторонних каналов
- Развязывающие устройства, требования к ним и классификация
- Анализ резисторной дифференциальной системы
- Лекция 5 Трансформаторная дифференциальная система Анализ трансформаторной дифференциальной системы
- Определение условия непропускания тдс от полюсов 4-4 к полюсам 2-2
- Определение входных сопротивлений тдс
- Определение затуханий уравновешенной тдс в направлениях передачи
- Анализ неуравновешенной трансформаторной дифференциальной системы
- Сравнение трансформаторной и резисторной дифференциальных систем
- Лекция 6 Двусторонний канал как замкнутая система Устойчивость двусторонних каналов
- Устойчивость телефонного канала
- Искажения от обратной связи
- Вопросы и задачи для самоконтроля к лекциям 4-6
- Лекция 7 Общие принципы построения многоканальных систем передачи
- Обобщенная структурная схема многоканальной системы передачи
- Методы разделения канальных сигналов
- Взаимные помехи между каналами
- Вопросы и задачи для самоконтроля
- Лекция 8 Принципы формирования канальных сигналов в системе передачи с частотным разделением каналов
- Формирование канальных сигналов
- Способы передачи амплитудно-модулированных сигналов
- Квадратурные искажения при передаче амплитудно-модулированных сигналов
- Лекция 9 Методы формирования одной боковой полосы. Искажения в каналах и трактах сп с чрк
- Фильтровой метод формирования обп
- Многократное преобразование частоты
- Фазоразностный метод формирования обп
- Искажения в каналах и трактах систем передачи с частотным разделением каналов
- Вопросы, задачи и упражнения для самоконтроля к лекциям 8и9
- Лекция 10 Принципы построения и особенности работы систем передачи с временным разделением каналов Структурная схема системы передачи с временным разделением каналов
- Формирование канальных сигналов в системах передачи с временным разделением каналов
- Формирование канальных сигналов с помощью амплитудно-импульсной модуляции.
- Формирование канальных сигналов с помощью широтно-импульсной модуляции.
- Формирование канальных сигналов на основе фазоимпульсной модуляции.
- Выбор вида импульсной модуляции для построения систем передачи с временным разделением каналов
- Помехоустойчивость амплитудно-импульсной модуляции.
- Выбор вида импульсной модуляции для построения систем передачи с временным разделением каналов
- Помехоустойчивость амплитудно-импульсной модуляции.
- Переходные влияния между каналами систем передачи с временным разделением каналов
- Оценка переходных помех 1-го рода.
- Оценка переходных помех 2-го рода.
- Обобщенная структурная схема системы передачи с временным разделением каналов на основе фазоимпульсной модуляции
- Вопросы, задачи и упражнения для самоконтроля
- Лекция 11 Общие принципы формирования и передачи сигналов в цифровых системах передачи Постановка задачи
- Квантование сигналов по уровню
- Оценка шумов квантования Оценка шумов при равномерном квантовании.
- Гармонический сигнал.
- Речевой сигнал.
- Речевой сигнал, поступающий от разных источников.
- Многоканальный групповой телефонный сигнал.
- Телевизионный сигнал.
- Оценка шумов квантования при неравномерном квантовании.
- Кодирование квантованных сигналов
- Обобщенная структурная схема цифровой системы передачи
- Виды синхронизации в цифровых системах передачи
- Принципы регенерации цифровых сигналов
- Линейное кодирование в цсп
- Лекция 12
- Разностные методы кодирования.
- Иерархия цифровых систем передачи
- Дифференциальная импульсно-кодовая модуляция
- Дифференциальная импульсно-кодовая модуляция как система с линейным предсказанием.
- Дельта-модуляция
- Иерархия цифровых систем передачи на основе импульсно-кодовой модуляции
- Объединение цифровых потоков в плезиохронной цифровой иерархии
- Объединение цифровых потоков в синхронной цифровой иерархии
- Вопросы и задачи для самоконтроля к лекциям 11 и 12
- Лекция 13 Общие принципы построения волоконно-оптических систем передачи Краткий исторический очерк
- Обобщенная структурная схема волоконно-оптической системы передачи
- Классификация волоконно-оптических систем передачи. Способы организации двусторонней связи на основе волоконно-оптических систем передачи. Способы уплотнения оптических кабелей
- Лекция 14 Основные узлы оптических систем передачи. Оптический линейный тракт Оптические передатчики
- Требования к источникам оптического излучения: их параметры и характеристики
- Оптические приемники
- Лавинные фотодиоды (лфд).
- Шумы приемников оптического излучения.
- Модуляторы оптической несущей
- Виды модуляции оптической несущей.
- Обобщенная структурная схема оптического линейного тракта
- Оптические усилители
- 1. Усилители Фабри - Перо.
- 2. Усилители на волокне, использующие бриллюэновское расстояние.
- 3. Усилители на волокне, использующие рамановское расстояние,
- 4. Полупроводниковые лазерные усилители (пплу)
- 5. Усилители на примесном волокне
- Вопросы и задачи для самоконтроля к лекциям 13 и 14
- Лекция 15 Общие принципы и особенности построения систем радиосвязи Основные понятия и определения. Классификация диапазонов радиочастот и радиоволн. Структура радиосистем передачи.
- Общие принципы организации радиосвязи. Классификация радиосистем передачи
- Особенности распространения радиоволн метрового -миллиметрового диапазонов
- Антенно-фидерные устройства
- Лекция 16 Построение радиорелейных и спутниковых линий передачи Основные понятия и определения. Классификация радиорелейных линий передачи. Принципы многоствольной передачи
- Виды модуляции, применяемые в радиорелейных и спутниковых системах передачи
- Вопросы для самоконтроля
- Лекция 17 Особенности построения оборудования радиорелейных и спутниковых систем передачи Принципы построения оборудования радиорелейных линий передачи прямой видимости
- Особенности построения тропосферных радиорелейных линий
- Передача сигналов телевизионного вещания по радиорелейным линиям
- Спутниковые системы передачи
- Много станционный доступ с разделением сигналов по форме.
- Принципы построения систем спутникового телевещания - ств
- Вопросы для самоконтроля
- Лекция 18 Общие принципы построения телекоммуникационных сетей Основные понятия и определения
- Назначение и состав сетей электросвязи
- Методы коммутации в сетях электросвязи
- Структура сетей электросвязи
- Принципы построения взаимоувязанной сети связи Российской Федерации
- Многоуровневый подход. Протоколы, интерфейс, стек протоколов
- Элементы теории телетрафика
- Вопросы для самоконтроля
- Лекция 19 Особенности построения вторичных телекоммуникационных сетей Состав и назначение сетей телефонной связи
- Структура вторичных цифровых сетей общего пользования.
- Состав и назначение телеграфных сетей
- Сети передачи данных
- Информационно-вычислительные сети. Сети эвм
- Телематические службы
- Цифровые сети интегрального обслуживания
- Вопросы для самоконтроля
- Лекция 20 Принципы построения сетей и систем радиосвязи Основные понятия и определения
- Основы построения систем сотовой связи
- Основы транкинговых систем радиосвязи
- Основы построения систем беспроводного абонентского радиодоступа
- Технико-экономические аспекты системы беспроводного абонентского радиодоступа
- Вопросы для самоконтроля,
- Основы построения телекоммуникационных систем и сетей