10.1. Система управления, построенная на базе snmp
Протокол SNMP разрабатывался в первую очередь для управления сетями на базе протоколов Интернет. Как протокол прикладного уровня он может, однако, использовать в качестве транспортного любой другой протокол, помимо UDP и IP. Например, он может выполняться поверх IPX, отображаться напрямую в кадры Ethernet, инкапсулироваться в ячейки ATM и т.п. Поэтому его можно использовать для управления и мониторинга устройств, в которых не реализуется стек Интернет протоколов (например, кабельные контроллеры, специализированные set-top-box’ы и т.п.).
Модель управления сетью на базе SNMP состоит из четырех компонентов:
управляемых узлов;
станций управления (менеджеров);
управляющей информации;
протокола управления.
Управляемыми узлами могут быть маршрутизаторы, коммутаторы, кабельные контроллеры и модемы, модули головной станции, оптоволоконные трансиверы и узлы, а также любые другие устройства, способные сообщать информацию о своем состоянии. Чтобы ими можно было управлять с помощью SNMP, узел должен выполнять управляющий процесс SNMP, иными словами, иметь агента SNMP. Каждый агент ведет собственную локальную базу данных о состоянии устройства и истории событий.
Управление сетью осуществляется со станций управления, которые представляют собой компьютеры общего назначения со специальным программным обеспечением для управления. Станции управления выполняют один или более процессов, взаимодействующих с агентами по сети. При такой схеме вся сложность (и вся интеллектуальность) сосредоточена на станциях управления, чтобы агенты были как можно более просты и чтобы они потребляли как можно меньшие ресурсы устройств, на которых выполняются.
SNMP тщательным образом описывает, какую информацию агент должен собирать и в каком формате ее следует предоставлять. Таким образом, каждое устройство поддерживает несколько переменных с описанием своего состояния. Все возможные переменные объединены в такую структуру, как база управляющей информации (MIB – Management Information Base).
Станции управления взаимодействуют с агентами с помощью протокола SNMP. Он позволяет станции запрашивать значения локальных переменных агента и при необходимости изменять их.
Благодаря своей простоте и транспорту без установления соединения SNMP оказывается весьма эффективным протоколом и нашел широкое распространение в существующих системах управления. Однако, с точки зрения концепции TMN, он является сильно упрощенным, т.к. в стандартных реализациях SNMP отсутствуют такие функции как Performance и Configuration Management. Это связано с тем, что, несмотря на введение дополнительных средств обеспечения безопасности в SNMPv2, вопрос о защищенности системы от попыток «взлома» остается открытым, прежде всего из-за примитивности протокола SNMP и его жесткой привязки к транспортным службам. Практически любой грамотный хакер, имея простейший программный пакет SNMP и подключившись к сети, на которой реализована функция Configuration Management, может менять конфигурацию и операционное состояние сетевых узлов. Чтобы избежать этого, производители оборудования создают собственные SNMP с протоколами для реализации функций Performance и Configuration Management и, тем самым, уходят от стандартных решений.
- О.В. Махровский «Технологии мультисервисных сетей связи» (тмсс)
- Содержание
- Глава 2 посвящена рассмотрению многоуровневой архитектуры мультисервисных сетей связи.
- Глава 1. Понятие мсс и ее базовые принципы
- 1.1. Понятие и основные определения мсс
- 1.2. Требования к мсс как сетям связи нового поколения
- 1.3. Особенности инфокоммуникационных услуг
- Глава 2. Архитектура мультисервисных сетей связи
- Глава 3. Услуги и службы мультисервисных сетей
- 3.1. Классификация служб и услуг мультисервисных сетей Дадим некоторые основные понятия и определения
- 3.2. Коммуникационные службы мсс
- 3.3. Информационные службы мсс
- 3.4. Операторы на рынке перспективных инфокоммуникационных услуг
- Vpn как услуга
- Услуги Triple Play
- Глава 4. Протоколы мультисервисных сетей связи
- 4.1. Основные типы протоколов
- 4.2. Протокол н.323
- 4.3. Протокол sip
- 4.4. Протокол mgcp
- 4.5. Протокол megaco/h.248
- 4.6. Протокол sigtran
- 4.7. Протокол передачи информации с управлением потоком
- Sctp для megaco
- Глава 5. Типы оборудования в мультисервисных сетях
- 5.1. Гибкий (программный) коммутатор Softswitch
- 5.1.1. Эталонная архитектура Softswitch
- Транспортная плоскость
- Плоскость управления обслуживанием вызова и сигнализации
- Плоскость услуг и приложений
- 5.1.2. Основные характеристики Softswitch
- Поддерживаемые протоколы
- Поддерживаемые интерфейсы
- 5.2. Шлюзы
- 5.2.1. Основные характеристики шлюзов Емкость
- Производительность
- Поддерживаемые интерфейсы
- 5.3. Терминальное оборудование
- 5.4. Сервер приложений
- Глава 6. Ims-единая платформа для доставки услуг в мсс
- 6.1. Способы предоставления услуг
- Некоторые протоколы, подсистемы, стандарты, применяемые в современных сетях сотовой подвижной связи
- Обозначение и функции элементов ip Multimedia Core Network
- 6.2. Конвергенция услуг и сетей
- 6.3. Универсальная технология для всех услуг
- 6.4. Аспекты стандартизации
- 6.5. Поступательное развитие сетей
- Стандартизация применяемых решений
- Глава 7. Технология mpls - фундамент для инфраструктуры мультисервисных сетей следующего поколения
- 7.2. Принцип коммутации
- 7.3. Элементы архитектуры Метки и способы маркировки
- Стек меток
- Компоненты коммутируемого маршрута
- Привязка и распределение меток
- 7.4. Построение коммутируемого маршрута
- 7.5. Перспективы технологии mpls
- 7.6. Краткий глоссарий терминов по технологии mpls
- 8.1. Понятие «качество обслуживания»
- 8.2. Резервирование ресурсов
- 8.3. Дифференцированные услуги
- 8.4. Коммутация по меткам
- 8.5. Пути реализации качества обслуживания
- Глава 9. Технологии сетей широкополосного абонентского доступа
- 9.1. Основные технологии доступа
- 9.1.1. Беспроводная технология
- Третьим положительным фактором технологии беспроводной связи является значительно более короткое время ввода системы в действие по сравнению с кабельной инфраструктурой.
- 9.1.2. Спутник для доступа в мсс
- 9.1.3. Семейство технологий хDsl
- 9.2. Сетевая архитектура
- Глава 10. Управление и эксплуатационно-техническое обслуживание мсс
- 10.1. Система управления, построенная на базе snmp
- 10.2. Система управления на базе архитектуры tmn
- 10.3. Суэто для мультисервисных сетей
- Глава 11. Обеспечение информационной безопасности в мультисервисных сетях
- 11.1. Рынок информационной безопасности
- 11. 2. Архитектура информационной безопасности
- 11.3. Угрозы безопасности мсс
- 11.4. Классификация угроз нсд в мсс
- Цели (объекты) угроз
- Пути проникновения действия угроз
- 11.5. От каких угроз иб следует защищать мсс
- 11.6. Пять наиболее важных технологий в области информационной безопасности
- 11.6.1. Usb-токены для аутентификации
- 11.6.2. Встроенные средства биометрии
- 11.6.3. Жесткие диски со встроенной возможностью шифрования
- 11.6.4. Браузеры и приложения со встроенными функциями защиты
- 11.6.5. Защита для мобильных устройств
- 11.7. Перспективы информационной безопасности
- Глава 12. Примеры построения мультисервисных сетей связи в Российской Федерации
- 12.1. Мсс нового поколения от основных операторов связи
- 12.2. Мсс в регионах России
- 12.2.1. Мультисервисная сеть птт
- 12.2.2. Сеть нового поколения в Новокузнецке
- 12.2.3. Мультимедийная сеть нового поколения в Якутии
- 12.2.4. Мультисервисная сеть в Ханты-Мансийском округе
- Махровский